MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilucfil Structured version   Unicode version

Theorem cfilucfil 18592
Description: Given a metric  D and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the filter bases which contain balls of any pre-chosen size. See iscfil 19210. (Contributed by Thierry Arnoux, 29-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
Assertion
Ref Expression
cfilucfil  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  ( C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) )  <->  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) ) )
Distinct variable groups:    D, a    X, a    F, a, x    x, D, y    x, F, y   
x, X, y, a   
y, D    C, a, x, y

Proof of Theorem cfilucfil
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . . 5  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
21metust 18590 . . . 4  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  ( ( X  X.  X ) filGen F )  e.  (UnifOn `  X ) )
3 cfilufbas 18311 . . . 4  |-  ( ( ( ( X  X.  X ) filGen F )  e.  (UnifOn `  X
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )  ->  C  e.  ( fBas `  X
) )
42, 3sylan 458 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )  ->  C  e.  ( fBas `  X
) )
5 simpllr 736 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  D  e.  (PsMet `  X )
)
6 psmetf 18329 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
7 ffun 5585 . . . . . 6  |-  ( D : ( X  X.  X ) --> RR*  ->  Fun 
D )
85, 6, 73syl 19 . . . . 5  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  Fun  D
)
92ad2antrr 707 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( ( X  X.  X )
filGen F )  e.  (UnifOn `  X ) )
10 simplr 732 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )
111metustfbas 18588 . . . . . . . 8  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  F  e.  ( fBas `  ( X  X.  X ) ) )
1211ad2antrr 707 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  F  e.  ( fBas `  ( X  X.  X ) ) )
13 cnvimass 5216 . . . . . . . 8  |-  ( `' D " ( 0 [,) x ) ) 
C_  dom  D
14 fdm 5587 . . . . . . . . 9  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
155, 6, 143syl 19 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  dom  D  =  ( X  X.  X ) )
1613, 15syl5sseq 3388 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) x ) ) 
C_  ( X  X.  X ) )
17 simpr 448 . . . . . . . . . . 11  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  x  e.  RR+ )
1817rphalfcld 10652 . . . . . . . . . 10  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( x  /  2 )  e.  RR+ )
19 eqidd 2436 . . . . . . . . . 10  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  =  ( `' D " ( 0 [,) (
x  /  2 ) ) ) )
20 oveq2 6081 . . . . . . . . . . . . 13  |-  ( a  =  ( x  / 
2 )  ->  (
0 [,) a )  =  ( 0 [,) ( x  /  2
) ) )
2120imaeq2d 5195 . . . . . . . . . . . 12  |-  ( a  =  ( x  / 
2 )  ->  ( `' D " ( 0 [,) a ) )  =  ( `' D " ( 0 [,) (
x  /  2 ) ) ) )
2221eqeq2d 2446 . . . . . . . . . . 11  |-  ( a  =  ( x  / 
2 )  ->  (
( `' D "
( 0 [,) (
x  /  2 ) ) )  =  ( `' D " ( 0 [,) a ) )  <-> 
( `' D "
( 0 [,) (
x  /  2 ) ) )  =  ( `' D " ( 0 [,) ( x  / 
2 ) ) ) ) )
2322rspcev 3044 . . . . . . . . . 10  |-  ( ( ( x  /  2
)  e.  RR+  /\  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  =  ( `' D " ( 0 [,) (
x  /  2 ) ) ) )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  =  ( `' D " ( 0 [,) a
) ) )
2418, 19, 23syl2anc 643 . . . . . . . . 9  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) (
x  /  2 ) ) )  =  ( `' D " ( 0 [,) a ) ) )
251metustel 18574 . . . . . . . . . 10  |-  ( D  e.  (PsMet `  X
)  ->  ( ( `' D " ( 0 [,) ( x  / 
2 ) ) )  e.  F  <->  E. a  e.  RR+  ( `' D " ( 0 [,) (
x  /  2 ) ) )  =  ( `' D " ( 0 [,) a ) ) ) )
2625biimpar 472 . . . . . . . . 9  |-  ( ( D  e.  (PsMet `  X )  /\  E. a  e.  RR+  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  =  ( `' D " ( 0 [,) a
) ) )  -> 
( `' D "
( 0 [,) (
x  /  2 ) ) )  e.  F
)
275, 24, 26syl2anc 643 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  e.  F )
28 0xr 9123 . . . . . . . . . . 11  |-  0  e.  RR*
2928a1i 11 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  0  e. 
RR* )
30 rpxr 10611 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  x  e. 
RR* )
31 0le0 10073 . . . . . . . . . . 11  |-  0  <_  0
3231a1i 11 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  0  <_ 
0 )
33 rpre 10610 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
3433rehalfcld 10206 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR )
35 rphalflt 10630 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  /  2 )  < 
x )
3634, 33, 35ltled 9213 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  /  2 )  <_  x )
37 icossico 10972 . . . . . . . . . 10  |-  ( ( ( 0  e.  RR*  /\  x  e.  RR* )  /\  ( 0  <_  0  /\  ( x  /  2
)  <_  x )
)  ->  ( 0 [,) ( x  / 
2 ) )  C_  ( 0 [,) x
) )
3829, 30, 32, 36, 37syl22anc 1185 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( 0 [,) ( x  / 
2 ) )  C_  ( 0 [,) x
) )
39 imass2 5232 . . . . . . . . 9  |-  ( ( 0 [,) ( x  /  2 ) ) 
C_  ( 0 [,) x )  ->  ( `' D " ( 0 [,) ( x  / 
2 ) ) ) 
C_  ( `' D " ( 0 [,) x
) ) )
4017, 38, 393syl 19 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) ( x  / 
2 ) ) ) 
C_  ( `' D " ( 0 [,) x
) ) )
41 sseq1 3361 . . . . . . . . 9  |-  ( w  =  ( `' D " ( 0 [,) (
x  /  2 ) ) )  ->  (
w  C_  ( `' D " ( 0 [,) x ) )  <->  ( `' D " ( 0 [,) ( x  /  2
) ) )  C_  ( `' D " ( 0 [,) x ) ) ) )
4241rspcev 3044 . . . . . . . 8  |-  ( ( ( `' D "
( 0 [,) (
x  /  2 ) ) )  e.  F  /\  ( `' D "
( 0 [,) (
x  /  2 ) ) )  C_  ( `' D " ( 0 [,) x ) ) )  ->  E. w  e.  F  w  C_  ( `' D " ( 0 [,) x ) ) )
4327, 40, 42syl2anc 643 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  E. w  e.  F  w  C_  ( `' D " ( 0 [,) x ) ) )
44 elfg 17895 . . . . . . . 8  |-  ( F  e.  ( fBas `  ( X  X.  X ) )  ->  ( ( `' D " ( 0 [,) x ) )  e.  ( ( X  X.  X ) filGen F )  <->  ( ( `' D " ( 0 [,) x ) ) 
C_  ( X  X.  X )  /\  E. w  e.  F  w  C_  ( `' D "
( 0 [,) x
) ) ) ) )
4544biimpar 472 . . . . . . 7  |-  ( ( F  e.  ( fBas `  ( X  X.  X
) )  /\  (
( `' D "
( 0 [,) x
) )  C_  ( X  X.  X )  /\  E. w  e.  F  w 
C_  ( `' D " ( 0 [,) x
) ) ) )  ->  ( `' D " ( 0 [,) x
) )  e.  ( ( X  X.  X
) filGen F ) )
4612, 16, 43, 45syl12anc 1182 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) x ) )  e.  ( ( X  X.  X ) filGen F ) )
47 cfiluexsm 18312 . . . . . 6  |-  ( ( ( ( X  X.  X ) filGen F )  e.  (UnifOn `  X
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) )  /\  ( `' D " ( 0 [,) x ) )  e.  ( ( X  X.  X ) filGen F ) )  ->  E. y  e.  C  ( y  X.  y )  C_  ( `' D " ( 0 [,) x ) ) )
489, 10, 46, 47syl3anc 1184 . . . . 5  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  E. y  e.  C  ( y  X.  y )  C_  ( `' D " ( 0 [,) x ) ) )
49 funimass2 5519 . . . . . . 7  |-  ( ( Fun  D  /\  (
y  X.  y ) 
C_  ( `' D " ( 0 [,) x
) ) )  -> 
( D " (
y  X.  y ) )  C_  ( 0 [,) x ) )
5049ex 424 . . . . . 6  |-  ( Fun 
D  ->  ( (
y  X.  y ) 
C_  ( `' D " ( 0 [,) x
) )  ->  ( D " ( y  X.  y ) )  C_  ( 0 [,) x
) ) )
5150reximdv 2809 . . . . 5  |-  ( Fun 
D  ->  ( E. y  e.  C  (
y  X.  y ) 
C_  ( `' D " ( 0 [,) x
) )  ->  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )
528, 48, 51sylc 58 . . . 4  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) )
5352ralrimiva 2781 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )  ->  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) )
544, 53jca 519 . 2  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )  ->  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )
55 simprl 733 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  C  e.  ( fBas `  X
) )
56 simp-4r 744 . . . . . . . . 9  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  -> 
( C  e.  (
fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x ) ) )
5756simprd 450 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) )
58 simplr 732 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  -> 
a  e.  RR+ )
59 oveq2 6081 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
0 [,) x )  =  ( 0 [,) a ) )
6059sseq2d 3368 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( D " (
y  X.  y ) )  C_  ( 0 [,) x )  <->  ( D " ( y  X.  y
) )  C_  (
0 [,) a ) ) )
6160rexbidv 2718 . . . . . . . . 9  |-  ( x  =  a  ->  ( E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x )  <->  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) a ) ) )
6261rspccv 3041 . . . . . . . 8  |-  ( A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x )  ->  ( a  e.  RR+  ->  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a ) ) )
6357, 58, 62sylc 58 . . . . . . 7  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a ) )
64 nfv 1629 . . . . . . . . . . . 12  |-  F/ y ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)
65 nfv 1629 . . . . . . . . . . . . 13  |-  F/ y  C  e.  ( fBas `  X )
66 nfcv 2571 . . . . . . . . . . . . . 14  |-  F/_ y RR+
67 nfre1 2754 . . . . . . . . . . . . . 14  |-  F/ y E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x )
6866, 67nfral 2751 . . . . . . . . . . . . 13  |-  F/ y A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x )
6965, 68nfan 1846 . . . . . . . . . . . 12  |-  F/ y ( C  e.  (
fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x ) )
7064, 69nfan 1846 . . . . . . . . . . 11  |-  F/ y ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )
71 nfv 1629 . . . . . . . . . . 11  |-  F/ y  v  e.  ( ( X  X.  X )
filGen F )
7270, 71nfan 1846 . . . . . . . . . 10  |-  F/ y ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )
73 nfv 1629 . . . . . . . . . 10  |-  F/ y  a  e.  RR+
7472, 73nfan 1846 . . . . . . . . 9  |-  F/ y ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )
75 nfv 1629 . . . . . . . . 9  |-  F/ y ( `' D "
( 0 [,) a
) )  C_  v
7674, 75nfan 1846 . . . . . . . 8  |-  F/ y ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )
7755ad4antr 713 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  C  e.  ( fBas `  X ) )
78 fbelss 17857 . . . . . . . . . . . 12  |-  ( ( C  e.  ( fBas `  X )  /\  y  e.  C )  ->  y  C_  X )
7977, 78sylancom 649 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  y  C_  X )
80 xpss12 4973 . . . . . . . . . . 11  |-  ( ( y  C_  X  /\  y  C_  X )  -> 
( y  X.  y
)  C_  ( X  X.  X ) )
8179, 79, 80syl2anc 643 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  ( y  X.  y
)  C_  ( X  X.  X ) )
82 simp-6r 748 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  D  e.  (PsMet `  X ) )
8382, 6, 143syl 19 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  dom  D  =  ( X  X.  X ) )
8481, 83sseqtr4d 3377 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  ( y  X.  y
)  C_  dom  D )
8584ex 424 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  -> 
( y  e.  C  ->  ( y  X.  y
)  C_  dom  D ) )
8676, 85ralrimi 2779 . . . . . . 7  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  A. y  e.  C  ( y  X.  y
)  C_  dom  D )
87 r19.29r 2839 . . . . . . . 8  |-  ( ( E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a )  /\  A. y  e.  C  (
y  X.  y ) 
C_  dom  D )  ->  E. y  e.  C  ( ( D "
( y  X.  y
) )  C_  (
0 [,) a )  /\  ( y  X.  y )  C_  dom  D ) )
88 dfss1 3537 . . . . . . . . . . . . 13  |-  ( ( y  X.  y ) 
C_  dom  D  <->  ( dom  D  i^i  ( y  X.  y ) )  =  ( y  X.  y
) )
8988biimpi 187 . . . . . . . . . . . 12  |-  ( ( y  X.  y ) 
C_  dom  D  ->  ( dom  D  i^i  (
y  X.  y ) )  =  ( y  X.  y ) )
9089adantl 453 . . . . . . . . . . 11  |-  ( ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  ( dom  D  i^i  ( y  X.  y
) )  =  ( y  X.  y ) )
91 dminss 5278 . . . . . . . . . . 11  |-  ( dom 
D  i^i  ( y  X.  y ) )  C_  ( `' D " ( D
" ( y  X.  y ) ) )
9290, 91syl6eqssr 3391 . . . . . . . . . 10  |-  ( ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  ( y  X.  y )  C_  ( `' D " ( D
" ( y  X.  y ) ) ) )
93 imass2 5232 . . . . . . . . . . 11  |-  ( ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a )  ->  ( `' D " ( D
" ( y  X.  y ) ) ) 
C_  ( `' D " ( 0 [,) a
) ) )
9493adantr 452 . . . . . . . . . 10  |-  ( ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  ( `' D " ( D " (
y  X.  y ) ) )  C_  ( `' D " ( 0 [,) a ) ) )
9592, 94sstrd 3350 . . . . . . . . 9  |-  ( ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  ( y  X.  y )  C_  ( `' D " ( 0 [,) a ) ) )
9695reximi 2805 . . . . . . . 8  |-  ( E. y  e.  C  ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  E. y  e.  C  ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) ) )
9787, 96syl 16 . . . . . . 7  |-  ( ( E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a )  /\  A. y  e.  C  (
y  X.  y ) 
C_  dom  D )  ->  E. y  e.  C  ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) ) )
9863, 86, 97syl2anc 643 . . . . . 6  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) ) )
99 r19.41v 2853 . . . . . . 7  |-  ( E. y  e.  C  ( ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  <->  ( E. y  e.  C  (
y  X.  y ) 
C_  ( `' D " ( 0 [,) a
) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v ) )
100 sstr 3348 . . . . . . . 8  |-  ( ( ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  -> 
( y  X.  y
)  C_  v )
101100reximi 2805 . . . . . . 7  |-  ( E. y  e.  C  ( ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( y  X.  y
)  C_  v )
10299, 101sylbir 205 . . . . . 6  |-  ( ( E. y  e.  C  ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( y  X.  y
)  C_  v )
10398, 102sylancom 649 . . . . 5  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( y  X.  y
)  C_  v )
104 simp-5r 746 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  w  e.  F )  /\  w  C_  v )  ->  D  e.  (PsMet `  X )
)
105 simplr 732 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  w  e.  F )  /\  w  C_  v )  ->  w  e.  F )
1061metustel 18574 . . . . . . . . 9  |-  ( D  e.  (PsMet `  X
)  ->  ( w  e.  F  <->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) ) )
107106biimpa 471 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  w  e.  F )  ->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) )
108104, 105, 107syl2anc 643 . . . . . . 7  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  w  e.  F )  /\  w  C_  v )  ->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) )
109 r19.41v 2853 . . . . . . . 8  |-  ( E. a  e.  RR+  (
w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v
)  <->  ( E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v
) )
110 sseq1 3361 . . . . . . . . . 10  |-  ( w  =  ( `' D " ( 0 [,) a
) )  ->  (
w  C_  v  <->  ( `' D " ( 0 [,) a ) )  C_  v ) )
111110biimpa 471 . . . . . . . . 9  |-  ( ( w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v
)  ->  ( `' D " ( 0 [,) a ) )  C_  v )
112111reximi 2805 . . . . . . . 8  |-  ( E. a  e.  RR+  (
w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v
)  ->  E. a  e.  RR+  ( `' D " ( 0 [,) a
) )  C_  v
)
113109, 112sylbir 205 . . . . . . 7  |-  ( ( E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) a ) ) 
C_  v )
114108, 113sylancom 649 . . . . . 6  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  w  e.  F )  /\  w  C_  v )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) a
) )  C_  v
)
11511ad2antrr 707 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  F  e.  ( fBas `  ( X  X.  X ) ) )
116 elfg 17895 . . . . . . . . 9  |-  ( F  e.  ( fBas `  ( X  X.  X ) )  ->  ( v  e.  ( ( X  X.  X ) filGen F )  <-> 
( v  C_  ( X  X.  X )  /\  E. w  e.  F  w 
C_  v ) ) )
117116biimpa 471 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  ( X  X.  X
) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  ( v  C_  ( X  X.  X
)  /\  E. w  e.  F  w  C_  v
) )
118115, 117sylancom 649 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  ( v  C_  ( X  X.  X
)  /\  E. w  e.  F  w  C_  v
) )
119118simprd 450 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  E. w  e.  F  w  C_  v
)
120114, 119r19.29a 2842 . . . . 5  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) a
) )  C_  v
)
121103, 120r19.29a 2842 . . . 4  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  E. y  e.  C  ( y  X.  y )  C_  v
)
122121ralrimiva 2781 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  A. v  e.  ( ( X  X.  X ) filGen F ) E. y  e.  C  ( y  X.  y
)  C_  v )
1232adantr 452 . . . 4  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  (
( X  X.  X
) filGen F )  e.  (UnifOn `  X )
)
124 iscfilu 18310 . . . 4  |-  ( ( ( X  X.  X
) filGen F )  e.  (UnifOn `  X )  ->  ( C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) )  <->  ( C  e.  ( fBas `  X
)  /\  A. v  e.  ( ( X  X.  X ) filGen F ) E. y  e.  C  ( y  X.  y
)  C_  v )
) )
125123, 124syl 16 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  ( C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) )  <-> 
( C  e.  (
fBas `  X )  /\  A. v  e.  ( ( X  X.  X
) filGen F ) E. y  e.  C  ( y  X.  y ) 
C_  v ) ) )
12655, 122, 125mpbir2and 889 . 2  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )
12754, 126impbida 806 1  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  ( C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) )  <->  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698    i^i cin 3311    C_ wss 3312   (/)c0 3620   class class class wbr 4204    e. cmpt 4258    X. cxp 4868   `'ccnv 4869   dom cdm 4870   ran crn 4871   "cima 4873   Fun wfun 5440   -->wf 5442   ` cfv 5446  (class class class)co 6073   0cc0 8982   RR*cxr 9111    <_ cle 9113    / cdiv 9669   2c2 10041   RR+crp 10604   [,)cico 10910  PsMetcpsmet 16677   fBascfbas 16681   filGencfg 16682  UnifOncust 18221  CauFiluccfilu 18308
This theorem is referenced by:  cfilucfil2  18596
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-2 10050  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ico 10914  df-psmet 16686  df-fbas 16691  df-fg 16692  df-fil 17870  df-ust 18222  df-cfilu 18309
  Copyright terms: Public domain W3C validator