MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfilucfil Structured version   Unicode version

Theorem cfilucfil 18605
Description: Given a metric  D and a uniform structure generated by that metric, Cauchy filter bases on that uniform structure are exactly the filter bases which contain balls of any pre-chosen size. See iscfil 19223. (Contributed by Thierry Arnoux, 29-Nov-2017.) (Revised by Thierry Arnoux, 11-Feb-2018.)
Hypothesis
Ref Expression
metust.1  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
Assertion
Ref Expression
cfilucfil  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  ( C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) )  <->  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) ) )
Distinct variable groups:    D, a    X, a    F, a, x    x, D, y    x, F, y   
x, X, y, a   
y, D    C, a, x, y

Proof of Theorem cfilucfil
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 metust.1 . . . . 5  |-  F  =  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) )
21metust 18603 . . . 4  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  ( ( X  X.  X ) filGen F )  e.  (UnifOn `  X ) )
3 cfilufbas 18324 . . . 4  |-  ( ( ( ( X  X.  X ) filGen F )  e.  (UnifOn `  X
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )  ->  C  e.  ( fBas `  X
) )
42, 3sylan 459 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )  ->  C  e.  ( fBas `  X
) )
5 simpllr 737 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  D  e.  (PsMet `  X )
)
6 psmetf 18342 . . . . . 6  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
7 ffun 5596 . . . . . 6  |-  ( D : ( X  X.  X ) --> RR*  ->  Fun 
D )
85, 6, 73syl 19 . . . . 5  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  Fun  D
)
92ad2antrr 708 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( ( X  X.  X )
filGen F )  e.  (UnifOn `  X ) )
10 simplr 733 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )
111metustfbas 18601 . . . . . . . 8  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  F  e.  ( fBas `  ( X  X.  X ) ) )
1211ad2antrr 708 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  F  e.  ( fBas `  ( X  X.  X ) ) )
13 cnvimass 5227 . . . . . . . 8  |-  ( `' D " ( 0 [,) x ) ) 
C_  dom  D
14 fdm 5598 . . . . . . . . 9  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
155, 6, 143syl 19 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  dom  D  =  ( X  X.  X ) )
1613, 15syl5sseq 3398 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) x ) ) 
C_  ( X  X.  X ) )
17 simpr 449 . . . . . . . . . . 11  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  x  e.  RR+ )
1817rphalfcld 10665 . . . . . . . . . 10  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( x  /  2 )  e.  RR+ )
19 eqidd 2439 . . . . . . . . . 10  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  =  ( `' D " ( 0 [,) (
x  /  2 ) ) ) )
20 oveq2 6092 . . . . . . . . . . . . 13  |-  ( a  =  ( x  / 
2 )  ->  (
0 [,) a )  =  ( 0 [,) ( x  /  2
) ) )
2120imaeq2d 5206 . . . . . . . . . . . 12  |-  ( a  =  ( x  / 
2 )  ->  ( `' D " ( 0 [,) a ) )  =  ( `' D " ( 0 [,) (
x  /  2 ) ) ) )
2221eqeq2d 2449 . . . . . . . . . . 11  |-  ( a  =  ( x  / 
2 )  ->  (
( `' D "
( 0 [,) (
x  /  2 ) ) )  =  ( `' D " ( 0 [,) a ) )  <-> 
( `' D "
( 0 [,) (
x  /  2 ) ) )  =  ( `' D " ( 0 [,) ( x  / 
2 ) ) ) ) )
2322rspcev 3054 . . . . . . . . . 10  |-  ( ( ( x  /  2
)  e.  RR+  /\  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  =  ( `' D " ( 0 [,) (
x  /  2 ) ) ) )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  =  ( `' D " ( 0 [,) a
) ) )
2418, 19, 23syl2anc 644 . . . . . . . . 9  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) (
x  /  2 ) ) )  =  ( `' D " ( 0 [,) a ) ) )
251metustel 18587 . . . . . . . . . 10  |-  ( D  e.  (PsMet `  X
)  ->  ( ( `' D " ( 0 [,) ( x  / 
2 ) ) )  e.  F  <->  E. a  e.  RR+  ( `' D " ( 0 [,) (
x  /  2 ) ) )  =  ( `' D " ( 0 [,) a ) ) ) )
2625biimpar 473 . . . . . . . . 9  |-  ( ( D  e.  (PsMet `  X )  /\  E. a  e.  RR+  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  =  ( `' D " ( 0 [,) a
) ) )  -> 
( `' D "
( 0 [,) (
x  /  2 ) ) )  e.  F
)
275, 24, 26syl2anc 644 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) ( x  / 
2 ) ) )  e.  F )
28 0xr 9136 . . . . . . . . . . 11  |-  0  e.  RR*
2928a1i 11 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  0  e. 
RR* )
30 rpxr 10624 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  x  e. 
RR* )
31 0le0 10086 . . . . . . . . . . 11  |-  0  <_  0
3231a1i 11 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  0  <_ 
0 )
33 rpre 10623 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
3433rehalfcld 10219 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  /  2 )  e.  RR )
35 rphalflt 10643 . . . . . . . . . . 11  |-  ( x  e.  RR+  ->  ( x  /  2 )  < 
x )
3634, 33, 35ltled 9226 . . . . . . . . . 10  |-  ( x  e.  RR+  ->  ( x  /  2 )  <_  x )
37 icossico 10985 . . . . . . . . . 10  |-  ( ( ( 0  e.  RR*  /\  x  e.  RR* )  /\  ( 0  <_  0  /\  ( x  /  2
)  <_  x )
)  ->  ( 0 [,) ( x  / 
2 ) )  C_  ( 0 [,) x
) )
3829, 30, 32, 36, 37syl22anc 1186 . . . . . . . . 9  |-  ( x  e.  RR+  ->  ( 0 [,) ( x  / 
2 ) )  C_  ( 0 [,) x
) )
39 imass2 5243 . . . . . . . . 9  |-  ( ( 0 [,) ( x  /  2 ) ) 
C_  ( 0 [,) x )  ->  ( `' D " ( 0 [,) ( x  / 
2 ) ) ) 
C_  ( `' D " ( 0 [,) x
) ) )
4017, 38, 393syl 19 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) ( x  / 
2 ) ) ) 
C_  ( `' D " ( 0 [,) x
) ) )
41 sseq1 3371 . . . . . . . . 9  |-  ( w  =  ( `' D " ( 0 [,) (
x  /  2 ) ) )  ->  (
w  C_  ( `' D " ( 0 [,) x ) )  <->  ( `' D " ( 0 [,) ( x  /  2
) ) )  C_  ( `' D " ( 0 [,) x ) ) ) )
4241rspcev 3054 . . . . . . . 8  |-  ( ( ( `' D "
( 0 [,) (
x  /  2 ) ) )  e.  F  /\  ( `' D "
( 0 [,) (
x  /  2 ) ) )  C_  ( `' D " ( 0 [,) x ) ) )  ->  E. w  e.  F  w  C_  ( `' D " ( 0 [,) x ) ) )
4327, 40, 42syl2anc 644 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  E. w  e.  F  w  C_  ( `' D " ( 0 [,) x ) ) )
44 elfg 17908 . . . . . . . 8  |-  ( F  e.  ( fBas `  ( X  X.  X ) )  ->  ( ( `' D " ( 0 [,) x ) )  e.  ( ( X  X.  X ) filGen F )  <->  ( ( `' D " ( 0 [,) x ) ) 
C_  ( X  X.  X )  /\  E. w  e.  F  w  C_  ( `' D "
( 0 [,) x
) ) ) ) )
4544biimpar 473 . . . . . . 7  |-  ( ( F  e.  ( fBas `  ( X  X.  X
) )  /\  (
( `' D "
( 0 [,) x
) )  C_  ( X  X.  X )  /\  E. w  e.  F  w 
C_  ( `' D " ( 0 [,) x
) ) ) )  ->  ( `' D " ( 0 [,) x
) )  e.  ( ( X  X.  X
) filGen F ) )
4612, 16, 43, 45syl12anc 1183 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  ( `' D " ( 0 [,) x ) )  e.  ( ( X  X.  X ) filGen F ) )
47 cfiluexsm 18325 . . . . . 6  |-  ( ( ( ( X  X.  X ) filGen F )  e.  (UnifOn `  X
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) )  /\  ( `' D " ( 0 [,) x ) )  e.  ( ( X  X.  X ) filGen F ) )  ->  E. y  e.  C  ( y  X.  y )  C_  ( `' D " ( 0 [,) x ) ) )
489, 10, 46, 47syl3anc 1185 . . . . 5  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  E. y  e.  C  ( y  X.  y )  C_  ( `' D " ( 0 [,) x ) ) )
49 funimass2 5530 . . . . . . 7  |-  ( ( Fun  D  /\  (
y  X.  y ) 
C_  ( `' D " ( 0 [,) x
) ) )  -> 
( D " (
y  X.  y ) )  C_  ( 0 [,) x ) )
5049ex 425 . . . . . 6  |-  ( Fun 
D  ->  ( (
y  X.  y ) 
C_  ( `' D " ( 0 [,) x
) )  ->  ( D " ( y  X.  y ) )  C_  ( 0 [,) x
) ) )
5150reximdv 2819 . . . . 5  |-  ( Fun 
D  ->  ( E. y  e.  C  (
y  X.  y ) 
C_  ( `' D " ( 0 [,) x
) )  ->  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )
528, 48, 51sylc 59 . . . 4  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) ) )  /\  x  e.  RR+ )  ->  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) )
5352ralrimiva 2791 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )  ->  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) )
544, 53jca 520 . 2  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )  ->  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )
55 simprl 734 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  C  e.  ( fBas `  X
) )
56 simp-4r 745 . . . . . . . . 9  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  -> 
( C  e.  (
fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x ) ) )
5756simprd 451 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) )
58 simplr 733 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  -> 
a  e.  RR+ )
59 oveq2 6092 . . . . . . . . . . 11  |-  ( x  =  a  ->  (
0 [,) x )  =  ( 0 [,) a ) )
6059sseq2d 3378 . . . . . . . . . 10  |-  ( x  =  a  ->  (
( D " (
y  X.  y ) )  C_  ( 0 [,) x )  <->  ( D " ( y  X.  y
) )  C_  (
0 [,) a ) ) )
6160rexbidv 2728 . . . . . . . . 9  |-  ( x  =  a  ->  ( E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x )  <->  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) a ) ) )
6261rspccv 3051 . . . . . . . 8  |-  ( A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x )  ->  ( a  e.  RR+  ->  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a ) ) )
6357, 58, 62sylc 59 . . . . . . 7  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a ) )
64 nfv 1630 . . . . . . . . . . . 12  |-  F/ y ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)
65 nfv 1630 . . . . . . . . . . . . 13  |-  F/ y  C  e.  ( fBas `  X )
66 nfcv 2574 . . . . . . . . . . . . . 14  |-  F/_ y RR+
67 nfre1 2764 . . . . . . . . . . . . . 14  |-  F/ y E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x )
6866, 67nfral 2761 . . . . . . . . . . . . 13  |-  F/ y A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x )
6965, 68nfan 1847 . . . . . . . . . . . 12  |-  F/ y ( C  e.  (
fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) x ) )
7064, 69nfan 1847 . . . . . . . . . . 11  |-  F/ y ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )
71 nfv 1630 . . . . . . . . . . 11  |-  F/ y  v  e.  ( ( X  X.  X )
filGen F )
7270, 71nfan 1847 . . . . . . . . . 10  |-  F/ y ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )
73 nfv 1630 . . . . . . . . . 10  |-  F/ y  a  e.  RR+
7472, 73nfan 1847 . . . . . . . . 9  |-  F/ y ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )
75 nfv 1630 . . . . . . . . 9  |-  F/ y ( `' D "
( 0 [,) a
) )  C_  v
7674, 75nfan 1847 . . . . . . . 8  |-  F/ y ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )
7755ad4antr 714 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  C  e.  ( fBas `  X ) )
78 fbelss 17870 . . . . . . . . . . . 12  |-  ( ( C  e.  ( fBas `  X )  /\  y  e.  C )  ->  y  C_  X )
7977, 78sylancom 650 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  y  C_  X )
80 xpss12 4984 . . . . . . . . . . 11  |-  ( ( y  C_  X  /\  y  C_  X )  -> 
( y  X.  y
)  C_  ( X  X.  X ) )
8179, 79, 80syl2anc 644 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  ( y  X.  y
)  C_  ( X  X.  X ) )
82 simp-6r 749 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  D  e.  (PsMet `  X ) )
8382, 6, 143syl 19 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  dom  D  =  ( X  X.  X ) )
8481, 83sseqtr4d 3387 . . . . . . . . 9  |-  ( ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  /\  y  e.  C )  ->  ( y  X.  y
)  C_  dom  D )
8584ex 425 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  -> 
( y  e.  C  ->  ( y  X.  y
)  C_  dom  D ) )
8676, 85ralrimi 2789 . . . . . . 7  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  A. y  e.  C  ( y  X.  y
)  C_  dom  D )
87 r19.29r 2849 . . . . . . . 8  |-  ( ( E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a )  /\  A. y  e.  C  (
y  X.  y ) 
C_  dom  D )  ->  E. y  e.  C  ( ( D "
( y  X.  y
) )  C_  (
0 [,) a )  /\  ( y  X.  y )  C_  dom  D ) )
88 dfss1 3547 . . . . . . . . . . . . 13  |-  ( ( y  X.  y ) 
C_  dom  D  <->  ( dom  D  i^i  ( y  X.  y ) )  =  ( y  X.  y
) )
8988biimpi 188 . . . . . . . . . . . 12  |-  ( ( y  X.  y ) 
C_  dom  D  ->  ( dom  D  i^i  (
y  X.  y ) )  =  ( y  X.  y ) )
9089adantl 454 . . . . . . . . . . 11  |-  ( ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  ( dom  D  i^i  ( y  X.  y
) )  =  ( y  X.  y ) )
91 dminss 5289 . . . . . . . . . . 11  |-  ( dom 
D  i^i  ( y  X.  y ) )  C_  ( `' D " ( D
" ( y  X.  y ) ) )
9290, 91syl6eqssr 3401 . . . . . . . . . 10  |-  ( ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  ( y  X.  y )  C_  ( `' D " ( D
" ( y  X.  y ) ) ) )
93 imass2 5243 . . . . . . . . . . 11  |-  ( ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a )  ->  ( `' D " ( D
" ( y  X.  y ) ) ) 
C_  ( `' D " ( 0 [,) a
) ) )
9493adantr 453 . . . . . . . . . 10  |-  ( ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  ( `' D " ( D " (
y  X.  y ) ) )  C_  ( `' D " ( 0 [,) a ) ) )
9592, 94sstrd 3360 . . . . . . . . 9  |-  ( ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  ( y  X.  y )  C_  ( `' D " ( 0 [,) a ) ) )
9695reximi 2815 . . . . . . . 8  |-  ( E. y  e.  C  ( ( D " (
y  X.  y ) )  C_  ( 0 [,) a )  /\  ( y  X.  y
)  C_  dom  D )  ->  E. y  e.  C  ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) ) )
9787, 96syl 16 . . . . . . 7  |-  ( ( E. y  e.  C  ( D " ( y  X.  y ) ) 
C_  ( 0 [,) a )  /\  A. y  e.  C  (
y  X.  y ) 
C_  dom  D )  ->  E. y  e.  C  ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) ) )
9863, 86, 97syl2anc 644 . . . . . 6  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) ) )
99 r19.41v 2863 . . . . . . 7  |-  ( E. y  e.  C  ( ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  <->  ( E. y  e.  C  (
y  X.  y ) 
C_  ( `' D " ( 0 [,) a
) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v ) )
100 sstr 3358 . . . . . . . 8  |-  ( ( ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  -> 
( y  X.  y
)  C_  v )
101100reximi 2815 . . . . . . 7  |-  ( E. y  e.  C  ( ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( y  X.  y
)  C_  v )
10299, 101sylbir 206 . . . . . 6  |-  ( ( E. y  e.  C  ( y  X.  y
)  C_  ( `' D " ( 0 [,) a ) )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( y  X.  y
)  C_  v )
10398, 102sylancom 650 . . . . 5  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  a  e.  RR+ )  /\  ( `' D " ( 0 [,) a ) ) 
C_  v )  ->  E. y  e.  C  ( y  X.  y
)  C_  v )
104 simp-5r 747 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  w  e.  F )  /\  w  C_  v )  ->  D  e.  (PsMet `  X )
)
105 simplr 733 . . . . . . . 8  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  w  e.  F )  /\  w  C_  v )  ->  w  e.  F )
1061metustel 18587 . . . . . . . . 9  |-  ( D  e.  (PsMet `  X
)  ->  ( w  e.  F  <->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) ) )
107106biimpa 472 . . . . . . . 8  |-  ( ( D  e.  (PsMet `  X )  /\  w  e.  F )  ->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) )
108104, 105, 107syl2anc 644 . . . . . . 7  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  w  e.  F )  /\  w  C_  v )  ->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) )
109 r19.41v 2863 . . . . . . . 8  |-  ( E. a  e.  RR+  (
w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v
)  <->  ( E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v
) )
110 sseq1 3371 . . . . . . . . . 10  |-  ( w  =  ( `' D " ( 0 [,) a
) )  ->  (
w  C_  v  <->  ( `' D " ( 0 [,) a ) )  C_  v ) )
111110biimpa 472 . . . . . . . . 9  |-  ( ( w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v
)  ->  ( `' D " ( 0 [,) a ) )  C_  v )
112111reximi 2815 . . . . . . . 8  |-  ( E. a  e.  RR+  (
w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v
)  ->  E. a  e.  RR+  ( `' D " ( 0 [,) a
) )  C_  v
)
113109, 112sylbir 206 . . . . . . 7  |-  ( ( E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) )  /\  w  C_  v )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) a ) ) 
C_  v )
114108, 113sylancom 650 . . . . . 6  |-  ( ( ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  /\  w  e.  F )  /\  w  C_  v )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) a
) )  C_  v
)
11511ad2antrr 708 . . . . . . . 8  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  F  e.  ( fBas `  ( X  X.  X ) ) )
116 elfg 17908 . . . . . . . . 9  |-  ( F  e.  ( fBas `  ( X  X.  X ) )  ->  ( v  e.  ( ( X  X.  X ) filGen F )  <-> 
( v  C_  ( X  X.  X )  /\  E. w  e.  F  w 
C_  v ) ) )
117116biimpa 472 . . . . . . . 8  |-  ( ( F  e.  ( fBas `  ( X  X.  X
) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  ( v  C_  ( X  X.  X
)  /\  E. w  e.  F  w  C_  v
) )
118115, 117sylancom 650 . . . . . . 7  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  ( v  C_  ( X  X.  X
)  /\  E. w  e.  F  w  C_  v
) )
119118simprd 451 . . . . . 6  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  E. w  e.  F  w  C_  v
)
120114, 119r19.29a 2852 . . . . 5  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) a
) )  C_  v
)
121103, 120r19.29a 2852 . . . 4  |-  ( ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X ) )  /\  ( C  e.  ( fBas `  X )  /\  A. x  e.  RR+  E. y  e.  C  ( D " ( y  X.  y
) )  C_  (
0 [,) x ) ) )  /\  v  e.  ( ( X  X.  X ) filGen F ) )  ->  E. y  e.  C  ( y  X.  y )  C_  v
)
122121ralrimiva 2791 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  A. v  e.  ( ( X  X.  X ) filGen F ) E. y  e.  C  ( y  X.  y
)  C_  v )
1232adantr 453 . . . 4  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  (
( X  X.  X
) filGen F )  e.  (UnifOn `  X )
)
124 iscfilu 18323 . . . 4  |-  ( ( ( X  X.  X
) filGen F )  e.  (UnifOn `  X )  ->  ( C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) )  <->  ( C  e.  ( fBas `  X
)  /\  A. v  e.  ( ( X  X.  X ) filGen F ) E. y  e.  C  ( y  X.  y
)  C_  v )
) )
125123, 124syl 16 . . 3  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  ( C  e.  (CauFilu `  (
( X  X.  X
) filGen F ) )  <-> 
( C  e.  (
fBas `  X )  /\  A. v  e.  ( ( X  X.  X
) filGen F ) E. y  e.  C  ( y  X.  y ) 
C_  v ) ) )
12655, 122, 125mpbir2and 890 . 2  |-  ( ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  /\  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) )  ->  C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) ) )
12754, 126impbida 807 1  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  ( C  e.  (CauFilu `  ( ( X  X.  X ) filGen F ) )  <->  ( C  e.  ( fBas `  X
)  /\  A. x  e.  RR+  E. y  e.  C  ( D "
( y  X.  y
) )  C_  (
0 [,) x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726    =/= wne 2601   A.wral 2707   E.wrex 2708    i^i cin 3321    C_ wss 3322   (/)c0 3630   class class class wbr 4215    e. cmpt 4269    X. cxp 4879   `'ccnv 4880   dom cdm 4881   ran crn 4882   "cima 4884   Fun wfun 5451   -->wf 5453   ` cfv 5457  (class class class)co 6084   0cc0 8995   RR*cxr 9124    <_ cle 9126    / cdiv 9682   2c2 10054   RR+crp 10617   [,)cico 10923  PsMetcpsmet 16690   fBascfbas 16694   filGencfg 16695  UnifOncust 18234  CauFiluccfilu 18321
This theorem is referenced by:  cfilucfil2  18609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-po 4506  df-so 4507  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-2 10063  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-ico 10927  df-psmet 16699  df-fbas 16704  df-fg 16705  df-fil 17883  df-ust 18235  df-cfilu 18322
  Copyright terms: Public domain W3C validator