MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfinfil Unicode version

Theorem cfinfil 17588
Description: Relative complements of the finite parts of an infinite set is a filter. When  A  =  NN the set of the relative complements is called Frechet's filter and is used to define the concept of limit of a sequence. (Contributed by FL, 14-Jul-2008.) (Revised by Stefan O'Rear, 2-Aug-2015.)
Assertion
Ref Expression
cfinfil  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X
) )
Distinct variable groups:    x, A    x, X
Allowed substitution hint:    V( x)

Proof of Theorem cfinfil
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difeq2 3288 . . . . . 6  |-  ( x  =  y  ->  ( A  \  x )  =  ( A  \  y
) )
21eleq1d 2349 . . . . 5  |-  ( x  =  y  ->  (
( A  \  x
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
32elrab 2923 . . . 4  |-  ( y  e.  { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  <->  ( y  e.  ~P X  /\  ( A  \  y )  e. 
Fin ) )
4 vex 2791 . . . . . 6  |-  y  e. 
_V
54elpw 3631 . . . . 5  |-  ( y  e.  ~P X  <->  y  C_  X )
65anbi1i 676 . . . 4  |-  ( ( y  e.  ~P X  /\  ( A  \  y
)  e.  Fin )  <->  ( y  C_  X  /\  ( A  \  y
)  e.  Fin )
)
73, 6bitri 240 . . 3  |-  ( y  e.  { x  e. 
~P X  |  ( A  \  x )  e.  Fin }  <->  ( y  C_  X  /\  ( A 
\  y )  e. 
Fin ) )
87a1i 10 . 2  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  ( y  e.  {
x  e.  ~P X  |  ( A  \  x )  e.  Fin }  <-> 
( y  C_  X  /\  ( A  \  y
)  e.  Fin )
) )
9 elex 2796 . . 3  |-  ( X  e.  V  ->  X  e.  _V )
1093ad2ant1 976 . 2  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  X  e.  _V )
11 ssdif0 3513 . . . . 5  |-  ( A 
C_  X  <->  ( A  \  X )  =  (/) )
12 0fin 7087 . . . . . 6  |-  (/)  e.  Fin
13 eleq1 2343 . . . . . 6  |-  ( ( A  \  X )  =  (/)  ->  ( ( A  \  X )  e.  Fin  <->  (/)  e.  Fin ) )
1412, 13mpbiri 224 . . . . 5  |-  ( ( A  \  X )  =  (/)  ->  ( A 
\  X )  e. 
Fin )
1511, 14sylbi 187 . . . 4  |-  ( A 
C_  X  ->  ( A  \  X )  e. 
Fin )
16 difeq2 3288 . . . . . . 7  |-  ( y  =  X  ->  ( A  \  y )  =  ( A  \  X
) )
1716eleq1d 2349 . . . . . 6  |-  ( y  =  X  ->  (
( A  \  y
)  e.  Fin  <->  ( A  \  X )  e.  Fin ) )
1817sbcieg 3023 . . . . 5  |-  ( X  e.  V  ->  ( [. X  /  y ]. ( A  \  y
)  e.  Fin  <->  ( A  \  X )  e.  Fin ) )
1918biimpar 471 . . . 4  |-  ( ( X  e.  V  /\  ( A  \  X )  e.  Fin )  ->  [. X  /  y ]. ( A  \  y
)  e.  Fin )
2015, 19sylan2 460 . . 3  |-  ( ( X  e.  V  /\  A  C_  X )  ->  [. X  /  y ]. ( A  \  y
)  e.  Fin )
21203adant3 975 . 2  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  [. X  /  y ]. ( A  \  y
)  e.  Fin )
22 0ex 4150 . . . . . . 7  |-  (/)  e.  _V
23 difeq2 3288 . . . . . . . 8  |-  ( y  =  (/)  ->  ( A 
\  y )  =  ( A  \  (/) ) )
2423eleq1d 2349 . . . . . . 7  |-  ( y  =  (/)  ->  ( ( A  \  y )  e.  Fin  <->  ( A  \  (/) )  e.  Fin ) )
2522, 24sbcie 3025 . . . . . 6  |-  ( [. (/)  /  y ]. ( A  \  y )  e. 
Fin 
<->  ( A  \  (/) )  e. 
Fin )
26 dif0 3524 . . . . . . 7  |-  ( A 
\  (/) )  =  A
2726eleq1i 2346 . . . . . 6  |-  ( ( A  \  (/) )  e. 
Fin 
<->  A  e.  Fin )
2825, 27bitri 240 . . . . 5  |-  ( [. (/)  /  y ]. ( A  \  y )  e. 
Fin 
<->  A  e.  Fin )
2928biimpi 186 . . . 4  |-  ( [. (/)  /  y ]. ( A  \  y )  e. 
Fin  ->  A  e.  Fin )
3029con3i 127 . . 3  |-  ( -.  A  e.  Fin  ->  -. 
[. (/)  /  y ]. ( A  \  y
)  e.  Fin )
31303ad2ant3 978 . 2  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  -.  [. (/)  /  y ]. ( A  \  y
)  e.  Fin )
32 sscon 3310 . . . . 5  |-  ( w 
C_  z  ->  ( A  \  z )  C_  ( A  \  w
) )
33 ssfi 7083 . . . . . 6  |-  ( ( ( A  \  w
)  e.  Fin  /\  ( A  \  z
)  C_  ( A  \  w ) )  -> 
( A  \  z
)  e.  Fin )
3433expcom 424 . . . . 5  |-  ( ( A  \  z ) 
C_  ( A  \  w )  ->  (
( A  \  w
)  e.  Fin  ->  ( A  \  z )  e.  Fin ) )
3532, 34syl 15 . . . 4  |-  ( w 
C_  z  ->  (
( A  \  w
)  e.  Fin  ->  ( A  \  z )  e.  Fin ) )
36 vex 2791 . . . . 5  |-  w  e. 
_V
37 difeq2 3288 . . . . . 6  |-  ( y  =  w  ->  ( A  \  y )  =  ( A  \  w
) )
3837eleq1d 2349 . . . . 5  |-  ( y  =  w  ->  (
( A  \  y
)  e.  Fin  <->  ( A  \  w )  e.  Fin ) )
3936, 38sbcie 3025 . . . 4  |-  ( [. w  /  y ]. ( A  \  y )  e. 
Fin 
<->  ( A  \  w
)  e.  Fin )
40 vex 2791 . . . . 5  |-  z  e. 
_V
41 difeq2 3288 . . . . . 6  |-  ( y  =  z  ->  ( A  \  y )  =  ( A  \  z
) )
4241eleq1d 2349 . . . . 5  |-  ( y  =  z  ->  (
( A  \  y
)  e.  Fin  <->  ( A  \  z )  e.  Fin ) )
4340, 42sbcie 3025 . . . 4  |-  ( [. z  /  y ]. ( A  \  y )  e. 
Fin 
<->  ( A  \  z
)  e.  Fin )
4435, 39, 433imtr4g 261 . . 3  |-  ( w 
C_  z  ->  ( [. w  /  y ]. ( A  \  y
)  e.  Fin  ->  [. z  /  y ]. ( A  \  y
)  e.  Fin )
)
45443ad2ant3 978 . 2  |-  ( ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  /\  z  C_  X  /\  w  C_  z )  ->  ( [. w  /  y ]. ( A  \  y )  e. 
Fin  ->  [. z  /  y ]. ( A  \  y
)  e.  Fin )
)
46 difindi 3423 . . . . 5  |-  ( A 
\  ( z  i^i  w ) )  =  ( ( A  \ 
z )  u.  ( A  \  w ) )
47 unfi 7124 . . . . 5  |-  ( ( ( A  \  z
)  e.  Fin  /\  ( A  \  w
)  e.  Fin )  ->  ( ( A  \ 
z )  u.  ( A  \  w ) )  e.  Fin )
4846, 47syl5eqel 2367 . . . 4  |-  ( ( ( A  \  z
)  e.  Fin  /\  ( A  \  w
)  e.  Fin )  ->  ( A  \  (
z  i^i  w )
)  e.  Fin )
4948a1i 10 . . 3  |-  ( ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  /\  z  C_  X  /\  w  C_  X )  ->  ( ( ( A  \  z )  e.  Fin  /\  ( A  \  w )  e. 
Fin )  ->  ( A  \  ( z  i^i  w ) )  e. 
Fin ) )
5043, 39anbi12i 678 . . 3  |-  ( (
[. z  /  y ]. ( A  \  y
)  e.  Fin  /\  [. w  /  y ]. ( A  \  y
)  e.  Fin )  <->  ( ( A  \  z
)  e.  Fin  /\  ( A  \  w
)  e.  Fin )
)
5140inex1 4155 . . . 4  |-  ( z  i^i  w )  e. 
_V
52 difeq2 3288 . . . . 5  |-  ( y  =  ( z  i^i  w )  ->  ( A  \  y )  =  ( A  \  (
z  i^i  w )
) )
5352eleq1d 2349 . . . 4  |-  ( y  =  ( z  i^i  w )  ->  (
( A  \  y
)  e.  Fin  <->  ( A  \  ( z  i^i  w
) )  e.  Fin ) )
5451, 53sbcie 3025 . . 3  |-  ( [. ( z  i^i  w
)  /  y ]. ( A  \  y
)  e.  Fin  <->  ( A  \  ( z  i^i  w
) )  e.  Fin )
5549, 50, 543imtr4g 261 . 2  |-  ( ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  /\  z  C_  X  /\  w  C_  X )  ->  ( ( [. z  /  y ]. ( A  \  y )  e. 
Fin  /\  [. w  / 
y ]. ( A  \ 
y )  e.  Fin )  ->  [. ( z  i^i  w )  /  y ]. ( A  \  y
)  e.  Fin )
)
568, 10, 21, 31, 45, 55isfild 17553 1  |-  ( ( X  e.  V  /\  A  C_  X  /\  -.  A  e.  Fin )  ->  { x  e.  ~P X  |  ( A  \  x )  e.  Fin }  e.  ( Fil `  X
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788   [.wsbc 2991    \ cdif 3149    u. cun 3150    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   ` cfv 5255   Fincfn 6863   Filcfil 17540
This theorem is referenced by:  ufinffr  17624
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-recs 6388  df-rdg 6423  df-oadd 6483  df-er 6660  df-en 6864  df-fin 6867  df-fbas 17520  df-fil 17541
  Copyright terms: Public domain W3C validator