MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflem Structured version   Unicode version

Theorem cflem 8131
Description: A lemma used to simplify cofinality computations, showing the existence of the cardinal of an unbounded subset of a set  A. (Contributed by NM, 24-Apr-2004.)
Assertion
Ref Expression
cflem  |-  ( A  e.  V  ->  E. x E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) )
Distinct variable group:    x, y, z, w, A
Allowed substitution hints:    V( x, y, z, w)

Proof of Theorem cflem
StepHypRef Expression
1 ssid 3369 . . 3  |-  A  C_  A
2 ssid 3369 . . . . 5  |-  z  C_  z
3 sseq2 3372 . . . . . 6  |-  ( w  =  z  ->  (
z  C_  w  <->  z  C_  z ) )
43rspcev 3054 . . . . 5  |-  ( ( z  e.  A  /\  z  C_  z )  ->  E. w  e.  A  z  C_  w )
52, 4mpan2 654 . . . 4  |-  ( z  e.  A  ->  E. w  e.  A  z  C_  w )
65rgen 2773 . . 3  |-  A. z  e.  A  E. w  e.  A  z  C_  w
7 sseq1 3371 . . . . 5  |-  ( y  =  A  ->  (
y  C_  A  <->  A  C_  A
) )
8 rexeq 2907 . . . . . 6  |-  ( y  =  A  ->  ( E. w  e.  y 
z  C_  w  <->  E. w  e.  A  z  C_  w ) )
98ralbidv 2727 . . . . 5  |-  ( y  =  A  ->  ( A. z  e.  A  E. w  e.  y 
z  C_  w  <->  A. z  e.  A  E. w  e.  A  z  C_  w ) )
107, 9anbi12d 693 . . . 4  |-  ( y  =  A  ->  (
( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )  <->  ( A  C_  A  /\  A. z  e.  A  E. w  e.  A  z  C_  w ) ) )
1110spcegv 3039 . . 3  |-  ( A  e.  V  ->  (
( A  C_  A  /\  A. z  e.  A  E. w  e.  A  z  C_  w )  ->  E. y ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w
) ) )
121, 6, 11mp2ani 661 . 2  |-  ( A  e.  V  ->  E. y
( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
)
13 fvex 5745 . . . . . 6  |-  ( card `  y )  e.  _V
1413isseti 2964 . . . . 5  |-  E. x  x  =  ( card `  y )
15 19.41v 1925 . . . . 5  |-  ( E. x ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  <->  ( E. x  x  =  ( card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
) )
1614, 15mpbiran 886 . . . 4  |-  ( E. x ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  <->  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )
1716exbii 1593 . . 3  |-  ( E. y E. x ( x  =  ( card `  y )  /\  (
y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  <->  E. y
( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
)
18 excom 1757 . . 3  |-  ( E. y E. x ( x  =  ( card `  y )  /\  (
y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  <->  E. x E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) )
1917, 18bitr3i 244 . 2  |-  ( E. y ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w
)  <->  E. x E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
) )
2012, 19sylib 190 1  |-  ( A  e.  V  ->  E. x E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360   E.wex 1551    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708    C_ wss 3322   ` cfv 5457   cardccrd 7827
This theorem is referenced by:  cfval  8132  cff  8133  cff1  8143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-nul 4341
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-sn 3822  df-pr 3823  df-uni 4018  df-iota 5421  df-fv 5465
  Copyright terms: Public domain W3C validator