MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cflm Unicode version

Theorem cflm 7876
Description: Value of the cofinality function at a limit ordinal. Part of Definition of cofinality of [Enderton] p. 257. (Contributed by NM, 26-Apr-2004.)
Assertion
Ref Expression
cflm  |-  ( ( A  e.  B  /\  Lim  A )  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) } )
Distinct variable group:    x, y, A
Allowed substitution hints:    B( x, y)

Proof of Theorem cflm
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2796 . 2  |-  ( A  e.  B  ->  A  e.  _V )
2 limsuc 4640 . . . . . . . . . . . . . . . . . 18  |-  ( Lim 
A  ->  ( v  e.  A  <->  suc  v  e.  A
) )
32biimpd 198 . . . . . . . . . . . . . . . . 17  |-  ( Lim 
A  ->  ( v  e.  A  ->  suc  v  e.  A ) )
4 sseq1 3199 . . . . . . . . . . . . . . . . . . . 20  |-  ( z  =  suc  v  -> 
( z  C_  w  <->  suc  v  C_  w )
)
54rexbidv 2564 . . . . . . . . . . . . . . . . . . 19  |-  ( z  =  suc  v  -> 
( E. w  e.  y  z  C_  w  <->  E. w  e.  y  suc  v  C_  w )
)
65rspcv 2880 . . . . . . . . . . . . . . . . . 18  |-  ( suc  v  e.  A  -> 
( A. z  e.  A  E. w  e.  y  z  C_  w  ->  E. w  e.  y  suc  v  C_  w
) )
7 vex 2791 . . . . . . . . . . . . . . . . . . . . 21  |-  v  e. 
_V
8 sucssel 4485 . . . . . . . . . . . . . . . . . . . . 21  |-  ( v  e.  _V  ->  ( suc  v  C_  w  -> 
v  e.  w ) )
97, 8ax-mp 8 . . . . . . . . . . . . . . . . . . . 20  |-  ( suc  v  C_  w  ->  v  e.  w )
109reximi 2650 . . . . . . . . . . . . . . . . . . 19  |-  ( E. w  e.  y  suc  v  C_  w  ->  E. w  e.  y  v  e.  w )
11 eluni2 3831 . . . . . . . . . . . . . . . . . . 19  |-  ( v  e.  U. y  <->  E. w  e.  y  v  e.  w )
1210, 11sylibr 203 . . . . . . . . . . . . . . . . . 18  |-  ( E. w  e.  y  suc  v  C_  w  ->  v  e.  U. y )
136, 12syl6com 31 . . . . . . . . . . . . . . . . 17  |-  ( A. z  e.  A  E. w  e.  y  z  C_  w  ->  ( suc  v  e.  A  ->  v  e.  U. y ) )
143, 13syl9 66 . . . . . . . . . . . . . . . 16  |-  ( Lim 
A  ->  ( A. z  e.  A  E. w  e.  y  z  C_  w  ->  ( v  e.  A  ->  v  e. 
U. y ) ) )
1514ralrimdv 2632 . . . . . . . . . . . . . . 15  |-  ( Lim 
A  ->  ( A. z  e.  A  E. w  e.  y  z  C_  w  ->  A. v  e.  A  v  e.  U. y ) )
16 dfss3 3170 . . . . . . . . . . . . . . 15  |-  ( A 
C_  U. y  <->  A. v  e.  A  v  e.  U. y )
1715, 16syl6ibr 218 . . . . . . . . . . . . . 14  |-  ( Lim 
A  ->  ( A. z  e.  A  E. w  e.  y  z  C_  w  ->  A  C_  U. y
) )
1817adantr 451 . . . . . . . . . . . . 13  |-  ( ( Lim  A  /\  y  C_  A )  ->  ( A. z  e.  A  E. w  e.  y 
z  C_  w  ->  A 
C_  U. y ) )
19 uniss 3848 . . . . . . . . . . . . . . 15  |-  ( y 
C_  A  ->  U. y  C_ 
U. A )
20 limuni 4452 . . . . . . . . . . . . . . . 16  |-  ( Lim 
A  ->  A  =  U. A )
2120sseq2d 3206 . . . . . . . . . . . . . . 15  |-  ( Lim 
A  ->  ( U. y  C_  A  <->  U. y  C_ 
U. A ) )
2219, 21syl5ibr 212 . . . . . . . . . . . . . 14  |-  ( Lim 
A  ->  ( y  C_  A  ->  U. y  C_  A ) )
2322imp 418 . . . . . . . . . . . . 13  |-  ( ( Lim  A  /\  y  C_  A )  ->  U. y  C_  A )
2418, 23jctird 528 . . . . . . . . . . . 12  |-  ( ( Lim  A  /\  y  C_  A )  ->  ( A. z  e.  A  E. w  e.  y 
z  C_  w  ->  ( A  C_  U. y  /\  U. y  C_  A
) ) )
25 eqss 3194 . . . . . . . . . . . 12  |-  ( A  =  U. y  <->  ( A  C_ 
U. y  /\  U. y  C_  A ) )
2624, 25syl6ibr 218 . . . . . . . . . . 11  |-  ( ( Lim  A  /\  y  C_  A )  ->  ( A. z  e.  A  E. w  e.  y 
z  C_  w  ->  A  =  U. y ) )
2726imdistanda 674 . . . . . . . . . 10  |-  ( Lim 
A  ->  ( (
y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w )  ->  (
y  C_  A  /\  A  =  U. y
) ) )
2827anim2d 548 . . . . . . . . 9  |-  ( Lim 
A  ->  ( (
x  =  ( card `  y )  /\  (
y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  -> 
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A  =  U. y ) ) ) )
2928eximdv 1608 . . . . . . . 8  |-  ( Lim 
A  ->  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) )  ->  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) ) )
3029ss2abdv 3246 . . . . . . 7  |-  ( Lim 
A  ->  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } 
C_  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) } )
31 intss 3883 . . . . . . 7  |-  ( { x  |  E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y 
z  C_  w )
) }  C_  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
3230, 31syl 15 . . . . . 6  |-  ( Lim 
A  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
3332adantl 452 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
34 limelon 4455 . . . . . 6  |-  ( ( A  e.  _V  /\  Lim  A )  ->  A  e.  On )
35 cfval 7873 . . . . . 6  |-  ( A  e.  On  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
3634, 35syl 15 . . . . 5  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A. z  e.  A  E. w  e.  y  z  C_  w ) ) } )
3733, 36sseqtr4d 3215 . . . 4  |-  ( ( A  e.  _V  /\  Lim  A )  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  C_  ( cf `  A ) )
38 cfub 7875 . . . . 5  |-  ( cf `  A )  C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) }
39 eqimss 3230 . . . . . . . . . 10  |-  ( A  =  U. y  ->  A  C_  U. y )
4039anim2i 552 . . . . . . . . 9  |-  ( ( y  C_  A  /\  A  =  U. y
)  ->  ( y  C_  A  /\  A  C_  U. y ) )
4140anim2i 552 . . . . . . . 8  |-  ( ( x  =  ( card `  y )  /\  (
y  C_  A  /\  A  =  U. y
) )  ->  (
x  =  ( card `  y )  /\  (
y  C_  A  /\  A  C_  U. y ) ) )
4241eximi 1563 . . . . . . 7  |-  ( E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) )  ->  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) )
4342ss2abi 3245 . . . . . 6  |-  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  C_  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) }
44 intss 3883 . . . . . 6  |-  ( { x  |  E. y
( x  =  (
card `  y )  /\  ( y  C_  A  /\  A  =  U. y ) ) } 
C_  { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) }  ->  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) } 
C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) } )
4543, 44ax-mp 8 . . . . 5  |-  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  C_  U. y ) ) } 
C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }
4638, 45sstri 3188 . . . 4  |-  ( cf `  A )  C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }
4737, 46jctil 523 . . 3  |-  ( ( A  e.  _V  /\  Lim  A )  ->  (
( cf `  A
)  C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  /\  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  C_  ( cf `  A ) ) )
48 eqss 3194 . . 3  |-  ( ( cf `  A )  =  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  <->  ( ( cf `  A )  C_  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  /\  |^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) }  C_  ( cf `  A ) ) )
4947, 48sylibr 203 . 2  |-  ( ( A  e.  _V  /\  Lim  A )  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) } )
501, 49sylan 457 1  |-  ( ( A  e.  B  /\  Lim  A )  ->  ( cf `  A )  = 
|^| { x  |  E. y ( x  =  ( card `  y
)  /\  ( y  C_  A  /\  A  = 
U. y ) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544   _Vcvv 2788    C_ wss 3152   U.cuni 3827   |^|cint 3862   Oncon0 4392   Lim wlim 4393   suc csuc 4394   ` cfv 5255   cardccrd 7568   cfccf 7570
This theorem is referenced by:  gruina  8440
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263  df-card 7572  df-cf 7574
  Copyright terms: Public domain W3C validator