MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslb2n Unicode version

Theorem cfslb2n 8083
Description: Any small collection of small subsets of  A cannot have union  A, where "small" means smaller than the cofinality. This is a stronger version of cfslb 8081. This is a common application of cofinality: under AC,  ( aleph `  1
) is regular, so it is not a countable union of countable sets. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1  |-  A  e. 
_V
Assertion
Ref Expression
cfslb2n  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( B  ~<  ( cf `  A )  ->  U. B  =/=  A
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem cfslb2n
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 limord 4583 . . . . . . . . . 10  |-  ( Lim 
A  ->  Ord  A )
2 ordsson 4712 . . . . . . . . . 10  |-  ( Ord 
A  ->  A  C_  On )
3 sstr 3301 . . . . . . . . . . 11  |-  ( ( x  C_  A  /\  A  C_  On )  ->  x  C_  On )
43expcom 425 . . . . . . . . . 10  |-  ( A 
C_  On  ->  ( x 
C_  A  ->  x  C_  On ) )
51, 2, 43syl 19 . . . . . . . . 9  |-  ( Lim 
A  ->  ( x  C_  A  ->  x  C_  On ) )
6 onsucuni 4750 . . . . . . . . 9  |-  ( x 
C_  On  ->  x  C_  suc  U. x )
75, 6syl6 31 . . . . . . . 8  |-  ( Lim 
A  ->  ( x  C_  A  ->  x  C_  suc  U. x ) )
87adantrd 455 . . . . . . 7  |-  ( Lim 
A  ->  ( (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  x  C_ 
suc  U. x ) )
98ralimdv 2730 . . . . . 6  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  A. x  e.  B  x  C_  suc  U. x ) )
10 uniiun 4087 . . . . . . 7  |-  U. B  =  U_ x  e.  B  x
11 ss2iun 4052 . . . . . . 7  |-  ( A. x  e.  B  x  C_ 
suc  U. x  ->  U_ x  e.  B  x  C_  U_ x  e.  B  suc  U. x
)
1210, 11syl5eqss 3337 . . . . . 6  |-  ( A. x  e.  B  x  C_ 
suc  U. x  ->  U. B  C_ 
U_ x  e.  B  suc  U. x )
139, 12syl6 31 . . . . 5  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  U. B  C_ 
U_ x  e.  B  suc  U. x ) )
1413imp 419 . . . 4  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  ->  U. B  C_  U_ x  e.  B  suc  U. x
)
15 cfslb.1 . . . . . . . . . 10  |-  A  e. 
_V
1615cfslbn 8082 . . . . . . . . 9  |-  ( ( Lim  A  /\  x  C_  A  /\  x  ~<  ( cf `  A ) )  ->  U. x  e.  A )
17163expib 1156 . . . . . . . 8  |-  ( Lim 
A  ->  ( (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  U. x  e.  A ) )
18 ordsucss 4740 . . . . . . . 8  |-  ( Ord 
A  ->  ( U. x  e.  A  ->  suc  U. x  C_  A ) )
191, 17, 18sylsyld 54 . . . . . . 7  |-  ( Lim 
A  ->  ( (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  suc  U. x  C_  A )
)
2019ralimdv 2730 . . . . . 6  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  A. x  e.  B  suc  U. x  C_  A ) )
21 iunss 4075 . . . . . 6  |-  ( U_ x  e.  B  suc  U. x  C_  A  <->  A. x  e.  B  suc  U. x  C_  A )
2220, 21syl6ibr 219 . . . . 5  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  U_ x  e.  B  suc  U. x  C_  A ) )
2322imp 419 . . . 4  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  ->  U_ x  e.  B  suc  U. x  C_  A
)
24 sseq1 3314 . . . . . 6  |-  ( U. B  =  A  ->  ( U. B  C_  U_ x  e.  B  suc  U. x  <->  A 
C_  U_ x  e.  B  suc  U. x ) )
25 eqss 3308 . . . . . . 7  |-  ( U_ x  e.  B  suc  U. x  =  A  <->  ( U_ x  e.  B  suc  U. x  C_  A  /\  A  C_  U_ x  e.  B  suc  U. x
) )
2625simplbi2com 1380 . . . . . 6  |-  ( A 
C_  U_ x  e.  B  suc  U. x  ->  ( U_ x  e.  B  suc  U. x  C_  A  ->  U_ x  e.  B  suc  U. x  =  A ) )
2724, 26syl6bi 220 . . . . 5  |-  ( U. B  =  A  ->  ( U. B  C_  U_ x  e.  B  suc  U. x  ->  ( U_ x  e.  B  suc  U. x  C_  A  ->  U_ x  e.  B  suc  U. x  =  A ) ) )
2827com3l 77 . . . 4  |-  ( U. B  C_  U_ x  e.  B  suc  U. x  ->  ( U_ x  e.  B  suc  U. x  C_  A  ->  ( U. B  =  A  ->  U_ x  e.  B  suc  U. x  =  A ) ) )
2914, 23, 28sylc 58 . . 3  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( U. B  =  A  ->  U_ x  e.  B  suc  U. x  =  A ) )
30 limsuc 4771 . . . . . . . . 9  |-  ( Lim 
A  ->  ( U. x  e.  A  <->  suc  U. x  e.  A ) )
3117, 30sylibd 206 . . . . . . . 8  |-  ( Lim 
A  ->  ( (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  suc  U. x  e.  A ) )
3231ralimdv 2730 . . . . . . 7  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  A. x  e.  B  suc  U. x  e.  A ) )
3332imp 419 . . . . . 6  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  ->  A. x  e.  B  suc  U. x  e.  A
)
34 r19.29 2791 . . . . . . . 8  |-  ( ( A. x  e.  B  suc  U. x  e.  A  /\  E. x  e.  B  y  =  suc  U. x
)  ->  E. x  e.  B  ( suc  U. x  e.  A  /\  y  =  suc  U. x
) )
35 eleq1 2449 . . . . . . . . . 10  |-  ( y  =  suc  U. x  ->  ( y  e.  A  <->  suc  U. x  e.  A
) )
3635biimparc 474 . . . . . . . . 9  |-  ( ( suc  U. x  e.  A  /\  y  =  suc  U. x )  ->  y  e.  A
)
3736rexlimivw 2771 . . . . . . . 8  |-  ( E. x  e.  B  ( suc  U. x  e.  A  /\  y  =  suc  U. x )  ->  y  e.  A
)
3834, 37syl 16 . . . . . . 7  |-  ( ( A. x  e.  B  suc  U. x  e.  A  /\  E. x  e.  B  y  =  suc  U. x
)  ->  y  e.  A )
3938ex 424 . . . . . 6  |-  ( A. x  e.  B  suc  U. x  e.  A  -> 
( E. x  e.  B  y  =  suc  U. x  ->  y  e.  A ) )
4033, 39syl 16 . . . . 5  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( E. x  e.  B  y  =  suc  U. x  ->  y  e.  A ) )
4140abssdv 3362 . . . 4  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  ->  { y  |  E. x  e.  B  y  =  suc  U. x }  C_  A )
42 vex 2904 . . . . . . . . 9  |-  x  e. 
_V
4342uniex 4647 . . . . . . . 8  |-  U. x  e.  _V
4443sucex 4733 . . . . . . 7  |-  suc  U. x  e.  _V
4544dfiun2 4069 . . . . . 6  |-  U_ x  e.  B  suc  U. x  =  U. { y  |  E. x  e.  B  y  =  suc  U. x }
4645eqeq1i 2396 . . . . 5  |-  ( U_ x  e.  B  suc  U. x  =  A  <->  U. { y  |  E. x  e.  B  y  =  suc  U. x }  =  A )
4715cfslb 8081 . . . . . 6  |-  ( ( Lim  A  /\  {
y  |  E. x  e.  B  y  =  suc  U. x }  C_  A  /\  U. { y  |  E. x  e.  B  y  =  suc  U. x }  =  A )  ->  ( cf `  A )  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x } )
48473expia 1155 . . . . 5  |-  ( ( Lim  A  /\  {
y  |  E. x  e.  B  y  =  suc  U. x }  C_  A )  ->  ( U. { y  |  E. x  e.  B  y  =  suc  U. x }  =  A  ->  ( cf `  A )  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x } ) )
4946, 48syl5bi 209 . . . 4  |-  ( ( Lim  A  /\  {
y  |  E. x  e.  B  y  =  suc  U. x }  C_  A )  ->  ( U_ x  e.  B  suc  U. x  =  A  ->  ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x } ) )
5041, 49syldan 457 . . 3  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( U_ x  e.  B  suc  U. x  =  A  ->  ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x } ) )
51 eqid 2389 . . . . . . . . 9  |-  ( x  e.  B  |->  suc  U. x )  =  ( x  e.  B  |->  suc  U. x )
5251rnmpt 5058 . . . . . . . 8  |-  ran  (
x  e.  B  |->  suc  U. x )  =  {
y  |  E. x  e.  B  y  =  suc  U. x }
5344, 51fnmpti 5515 . . . . . . . . . 10  |-  ( x  e.  B  |->  suc  U. x )  Fn  B
54 dffn4 5601 . . . . . . . . . 10  |-  ( ( x  e.  B  |->  suc  U. x )  Fn  B  <->  ( x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x ) )
5553, 54mpbi 200 . . . . . . . . 9  |-  ( x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )
56 relsdom 7054 . . . . . . . . . . 11  |-  Rel  ~<
5756brrelexi 4860 . . . . . . . . . 10  |-  ( B 
~<  ( cf `  A
)  ->  B  e.  _V )
58 breq1 4158 . . . . . . . . . . . 12  |-  ( y  =  B  ->  (
y  ~<  ( cf `  A
)  <->  B  ~<  ( cf `  A ) ) )
59 foeq2 5592 . . . . . . . . . . . . 13  |-  ( y  =  B  ->  (
( x  e.  B  |->  suc  U. x ) : y -onto-> ran  (
x  e.  B  |->  suc  U. x )  <->  ( x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x ) ) )
60 breq2 4159 . . . . . . . . . . . . 13  |-  ( y  =  B  ->  ( ran  ( x  e.  B  |->  suc  U. x )  ~<_  y  <->  ran  ( x  e.  B  |->  suc  U. x
)  ~<_  B ) )
6159, 60imbi12d 312 . . . . . . . . . . . 12  |-  ( y  =  B  ->  (
( ( x  e.  B  |->  suc  U. x
) : y -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  y )  <-> 
( ( x  e.  B  |->  suc  U. x
) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B ) ) )
6258, 61imbi12d 312 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
( y  ~<  ( cf `  A )  -> 
( ( x  e.  B  |->  suc  U. x
) : y -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  y ) )  <->  ( B  ~<  ( cf `  A )  ->  ( ( x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B ) ) ) )
63 cfon 8070 . . . . . . . . . . . . 13  |-  ( cf `  A )  e.  On
64 sdomdom 7073 . . . . . . . . . . . . 13  |-  ( y 
~<  ( cf `  A
)  ->  y  ~<_  ( cf `  A ) )
65 ondomen 7853 . . . . . . . . . . . . 13  |-  ( ( ( cf `  A
)  e.  On  /\  y  ~<_  ( cf `  A
) )  ->  y  e.  dom  card )
6663, 64, 65sylancr 645 . . . . . . . . . . . 12  |-  ( y 
~<  ( cf `  A
)  ->  y  e.  dom  card )
67 fodomnum 7873 . . . . . . . . . . . 12  |-  ( y  e.  dom  card  ->  ( ( x  e.  B  |->  suc  U. x ) : y -onto-> ran  (
x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  y ) )
6866, 67syl 16 . . . . . . . . . . 11  |-  ( y 
~<  ( cf `  A
)  ->  ( (
x  e.  B  |->  suc  U. x ) : y
-onto->
ran  ( x  e.  B  |->  suc  U. x
)  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  y ) )
6962, 68vtoclg 2956 . . . . . . . . . 10  |-  ( B  e.  _V  ->  ( B  ~<  ( cf `  A
)  ->  ( (
x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B ) ) )
7057, 69mpcom 34 . . . . . . . . 9  |-  ( B 
~<  ( cf `  A
)  ->  ( (
x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B ) )
7155, 70mpi 17 . . . . . . . 8  |-  ( B 
~<  ( cf `  A
)  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B )
7252, 71syl5eqbrr 4189 . . . . . . 7  |-  ( B 
~<  ( cf `  A
)  ->  { y  |  E. x  e.  B  y  =  suc  U. x }  ~<_  B )
73 domtr 7098 . . . . . . 7  |-  ( ( ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  /\  { y  |  E. x  e.  B  y  =  suc  U. x }  ~<_  B )  -> 
( cf `  A
)  ~<_  B )
7472, 73sylan2 461 . . . . . 6  |-  ( ( ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  /\  B  ~<  ( cf `  A ) )  ->  ( cf `  A
)  ~<_  B )
75 domnsym 7171 . . . . . 6  |-  ( ( cf `  A )  ~<_  B  ->  -.  B  ~<  ( cf `  A
) )
7674, 75syl 16 . . . . 5  |-  ( ( ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  /\  B  ~<  ( cf `  A ) )  ->  -.  B  ~<  ( cf `  A ) )
7776pm2.01da 430 . . . 4  |-  ( ( cf `  A )  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  ->  -.  B  ~<  ( cf `  A ) )
7877a1i 11 . . 3  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  ->  -.  B  ~<  ( cf `  A ) ) )
7929, 50, 783syld 53 . 2  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( U. B  =  A  ->  -.  B  ~<  ( cf `  A
) ) )
8079necon2ad 2600 1  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( B  ~<  ( cf `  A )  ->  U. B  =/=  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1717   {cab 2375    =/= wne 2552   A.wral 2651   E.wrex 2652   _Vcvv 2901    C_ wss 3265   U.cuni 3959   U_ciun 4037   class class class wbr 4155    e. cmpt 4209   Ord word 4523   Oncon0 4524   Lim wlim 4525   suc csuc 4526   dom cdm 4820   ran crn 4821    Fn wfn 5391   -onto->wfo 5394   ` cfv 5396    ~<_ cdom 7045    ~< csdm 7046   cardccrd 7757   cfccf 7759
This theorem is referenced by:  tskuni  8593
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-iin 4040  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-se 4485  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-isom 5405  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-er 6843  df-map 6958  df-en 7048  df-dom 7049  df-sdom 7050  df-card 7761  df-cf 7763  df-acn 7764
  Copyright terms: Public domain W3C validator