MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslb2n Structured version   Unicode version

Theorem cfslb2n 8148
Description: Any small collection of small subsets of  A cannot have union  A, where "small" means smaller than the cofinality. This is a stronger version of cfslb 8146. This is a common application of cofinality: under AC,  ( aleph `  1
) is regular, so it is not a countable union of countable sets. (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1  |-  A  e. 
_V
Assertion
Ref Expression
cfslb2n  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( B  ~<  ( cf `  A )  ->  U. B  =/=  A
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem cfslb2n
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 limord 4640 . . . . . . . . . 10  |-  ( Lim 
A  ->  Ord  A )
2 ordsson 4770 . . . . . . . . . 10  |-  ( Ord 
A  ->  A  C_  On )
3 sstr 3356 . . . . . . . . . . 11  |-  ( ( x  C_  A  /\  A  C_  On )  ->  x  C_  On )
43expcom 425 . . . . . . . . . 10  |-  ( A 
C_  On  ->  ( x 
C_  A  ->  x  C_  On ) )
51, 2, 43syl 19 . . . . . . . . 9  |-  ( Lim 
A  ->  ( x  C_  A  ->  x  C_  On ) )
6 onsucuni 4808 . . . . . . . . 9  |-  ( x 
C_  On  ->  x  C_  suc  U. x )
75, 6syl6 31 . . . . . . . 8  |-  ( Lim 
A  ->  ( x  C_  A  ->  x  C_  suc  U. x ) )
87adantrd 455 . . . . . . 7  |-  ( Lim 
A  ->  ( (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  x  C_ 
suc  U. x ) )
98ralimdv 2785 . . . . . 6  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  A. x  e.  B  x  C_  suc  U. x ) )
10 uniiun 4144 . . . . . . 7  |-  U. B  =  U_ x  e.  B  x
11 ss2iun 4108 . . . . . . 7  |-  ( A. x  e.  B  x  C_ 
suc  U. x  ->  U_ x  e.  B  x  C_  U_ x  e.  B  suc  U. x
)
1210, 11syl5eqss 3392 . . . . . 6  |-  ( A. x  e.  B  x  C_ 
suc  U. x  ->  U. B  C_ 
U_ x  e.  B  suc  U. x )
139, 12syl6 31 . . . . 5  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  U. B  C_ 
U_ x  e.  B  suc  U. x ) )
1413imp 419 . . . 4  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  ->  U. B  C_  U_ x  e.  B  suc  U. x
)
15 cfslb.1 . . . . . . . . . 10  |-  A  e. 
_V
1615cfslbn 8147 . . . . . . . . 9  |-  ( ( Lim  A  /\  x  C_  A  /\  x  ~<  ( cf `  A ) )  ->  U. x  e.  A )
17163expib 1156 . . . . . . . 8  |-  ( Lim 
A  ->  ( (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  U. x  e.  A ) )
18 ordsucss 4798 . . . . . . . 8  |-  ( Ord 
A  ->  ( U. x  e.  A  ->  suc  U. x  C_  A ) )
191, 17, 18sylsyld 54 . . . . . . 7  |-  ( Lim 
A  ->  ( (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  suc  U. x  C_  A )
)
2019ralimdv 2785 . . . . . 6  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  A. x  e.  B  suc  U. x  C_  A ) )
21 iunss 4132 . . . . . 6  |-  ( U_ x  e.  B  suc  U. x  C_  A  <->  A. x  e.  B  suc  U. x  C_  A )
2220, 21syl6ibr 219 . . . . 5  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  U_ x  e.  B  suc  U. x  C_  A ) )
2322imp 419 . . . 4  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  ->  U_ x  e.  B  suc  U. x  C_  A
)
24 sseq1 3369 . . . . . 6  |-  ( U. B  =  A  ->  ( U. B  C_  U_ x  e.  B  suc  U. x  <->  A 
C_  U_ x  e.  B  suc  U. x ) )
25 eqss 3363 . . . . . . 7  |-  ( U_ x  e.  B  suc  U. x  =  A  <->  ( U_ x  e.  B  suc  U. x  C_  A  /\  A  C_  U_ x  e.  B  suc  U. x
) )
2625simplbi2com 1383 . . . . . 6  |-  ( A 
C_  U_ x  e.  B  suc  U. x  ->  ( U_ x  e.  B  suc  U. x  C_  A  ->  U_ x  e.  B  suc  U. x  =  A ) )
2724, 26syl6bi 220 . . . . 5  |-  ( U. B  =  A  ->  ( U. B  C_  U_ x  e.  B  suc  U. x  ->  ( U_ x  e.  B  suc  U. x  C_  A  ->  U_ x  e.  B  suc  U. x  =  A ) ) )
2827com3l 77 . . . 4  |-  ( U. B  C_  U_ x  e.  B  suc  U. x  ->  ( U_ x  e.  B  suc  U. x  C_  A  ->  ( U. B  =  A  ->  U_ x  e.  B  suc  U. x  =  A ) ) )
2914, 23, 28sylc 58 . . 3  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( U. B  =  A  ->  U_ x  e.  B  suc  U. x  =  A ) )
30 limsuc 4829 . . . . . . . . 9  |-  ( Lim 
A  ->  ( U. x  e.  A  <->  suc  U. x  e.  A ) )
3117, 30sylibd 206 . . . . . . . 8  |-  ( Lim 
A  ->  ( (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  suc  U. x  e.  A ) )
3231ralimdv 2785 . . . . . . 7  |-  ( Lim 
A  ->  ( A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) )  ->  A. x  e.  B  suc  U. x  e.  A ) )
3332imp 419 . . . . . 6  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  ->  A. x  e.  B  suc  U. x  e.  A
)
34 r19.29 2846 . . . . . . . 8  |-  ( ( A. x  e.  B  suc  U. x  e.  A  /\  E. x  e.  B  y  =  suc  U. x
)  ->  E. x  e.  B  ( suc  U. x  e.  A  /\  y  =  suc  U. x
) )
35 eleq1 2496 . . . . . . . . . 10  |-  ( y  =  suc  U. x  ->  ( y  e.  A  <->  suc  U. x  e.  A
) )
3635biimparc 474 . . . . . . . . 9  |-  ( ( suc  U. x  e.  A  /\  y  =  suc  U. x )  ->  y  e.  A
)
3736rexlimivw 2826 . . . . . . . 8  |-  ( E. x  e.  B  ( suc  U. x  e.  A  /\  y  =  suc  U. x )  ->  y  e.  A
)
3834, 37syl 16 . . . . . . 7  |-  ( ( A. x  e.  B  suc  U. x  e.  A  /\  E. x  e.  B  y  =  suc  U. x
)  ->  y  e.  A )
3938ex 424 . . . . . 6  |-  ( A. x  e.  B  suc  U. x  e.  A  -> 
( E. x  e.  B  y  =  suc  U. x  ->  y  e.  A ) )
4033, 39syl 16 . . . . 5  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( E. x  e.  B  y  =  suc  U. x  ->  y  e.  A ) )
4140abssdv 3417 . . . 4  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  ->  { y  |  E. x  e.  B  y  =  suc  U. x }  C_  A )
42 vex 2959 . . . . . . . . 9  |-  x  e. 
_V
4342uniex 4705 . . . . . . . 8  |-  U. x  e.  _V
4443sucex 4791 . . . . . . 7  |-  suc  U. x  e.  _V
4544dfiun2 4125 . . . . . 6  |-  U_ x  e.  B  suc  U. x  =  U. { y  |  E. x  e.  B  y  =  suc  U. x }
4645eqeq1i 2443 . . . . 5  |-  ( U_ x  e.  B  suc  U. x  =  A  <->  U. { y  |  E. x  e.  B  y  =  suc  U. x }  =  A )
4715cfslb 8146 . . . . . 6  |-  ( ( Lim  A  /\  {
y  |  E. x  e.  B  y  =  suc  U. x }  C_  A  /\  U. { y  |  E. x  e.  B  y  =  suc  U. x }  =  A )  ->  ( cf `  A )  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x } )
48473expia 1155 . . . . 5  |-  ( ( Lim  A  /\  {
y  |  E. x  e.  B  y  =  suc  U. x }  C_  A )  ->  ( U. { y  |  E. x  e.  B  y  =  suc  U. x }  =  A  ->  ( cf `  A )  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x } ) )
4946, 48syl5bi 209 . . . 4  |-  ( ( Lim  A  /\  {
y  |  E. x  e.  B  y  =  suc  U. x }  C_  A )  ->  ( U_ x  e.  B  suc  U. x  =  A  ->  ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x } ) )
5041, 49syldan 457 . . 3  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( U_ x  e.  B  suc  U. x  =  A  ->  ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x } ) )
51 eqid 2436 . . . . . . . . 9  |-  ( x  e.  B  |->  suc  U. x )  =  ( x  e.  B  |->  suc  U. x )
5251rnmpt 5116 . . . . . . . 8  |-  ran  (
x  e.  B  |->  suc  U. x )  =  {
y  |  E. x  e.  B  y  =  suc  U. x }
5344, 51fnmpti 5573 . . . . . . . . . 10  |-  ( x  e.  B  |->  suc  U. x )  Fn  B
54 dffn4 5659 . . . . . . . . . 10  |-  ( ( x  e.  B  |->  suc  U. x )  Fn  B  <->  ( x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x ) )
5553, 54mpbi 200 . . . . . . . . 9  |-  ( x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )
56 relsdom 7116 . . . . . . . . . . 11  |-  Rel  ~<
5756brrelexi 4918 . . . . . . . . . 10  |-  ( B 
~<  ( cf `  A
)  ->  B  e.  _V )
58 breq1 4215 . . . . . . . . . . . 12  |-  ( y  =  B  ->  (
y  ~<  ( cf `  A
)  <->  B  ~<  ( cf `  A ) ) )
59 foeq2 5650 . . . . . . . . . . . . 13  |-  ( y  =  B  ->  (
( x  e.  B  |->  suc  U. x ) : y -onto-> ran  (
x  e.  B  |->  suc  U. x )  <->  ( x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x ) ) )
60 breq2 4216 . . . . . . . . . . . . 13  |-  ( y  =  B  ->  ( ran  ( x  e.  B  |->  suc  U. x )  ~<_  y  <->  ran  ( x  e.  B  |->  suc  U. x
)  ~<_  B ) )
6159, 60imbi12d 312 . . . . . . . . . . . 12  |-  ( y  =  B  ->  (
( ( x  e.  B  |->  suc  U. x
) : y -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  y )  <-> 
( ( x  e.  B  |->  suc  U. x
) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B ) ) )
6258, 61imbi12d 312 . . . . . . . . . . 11  |-  ( y  =  B  ->  (
( y  ~<  ( cf `  A )  -> 
( ( x  e.  B  |->  suc  U. x
) : y -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  y ) )  <->  ( B  ~<  ( cf `  A )  ->  ( ( x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B ) ) ) )
63 cfon 8135 . . . . . . . . . . . . 13  |-  ( cf `  A )  e.  On
64 sdomdom 7135 . . . . . . . . . . . . 13  |-  ( y 
~<  ( cf `  A
)  ->  y  ~<_  ( cf `  A ) )
65 ondomen 7918 . . . . . . . . . . . . 13  |-  ( ( ( cf `  A
)  e.  On  /\  y  ~<_  ( cf `  A
) )  ->  y  e.  dom  card )
6663, 64, 65sylancr 645 . . . . . . . . . . . 12  |-  ( y 
~<  ( cf `  A
)  ->  y  e.  dom  card )
67 fodomnum 7938 . . . . . . . . . . . 12  |-  ( y  e.  dom  card  ->  ( ( x  e.  B  |->  suc  U. x ) : y -onto-> ran  (
x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  y ) )
6866, 67syl 16 . . . . . . . . . . 11  |-  ( y 
~<  ( cf `  A
)  ->  ( (
x  e.  B  |->  suc  U. x ) : y
-onto->
ran  ( x  e.  B  |->  suc  U. x
)  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  y ) )
6962, 68vtoclg 3011 . . . . . . . . . 10  |-  ( B  e.  _V  ->  ( B  ~<  ( cf `  A
)  ->  ( (
x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B ) ) )
7057, 69mpcom 34 . . . . . . . . 9  |-  ( B 
~<  ( cf `  A
)  ->  ( (
x  e.  B  |->  suc  U. x ) : B -onto-> ran  ( x  e.  B  |->  suc  U. x )  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B ) )
7155, 70mpi 17 . . . . . . . 8  |-  ( B 
~<  ( cf `  A
)  ->  ran  ( x  e.  B  |->  suc  U. x )  ~<_  B )
7252, 71syl5eqbrr 4246 . . . . . . 7  |-  ( B 
~<  ( cf `  A
)  ->  { y  |  E. x  e.  B  y  =  suc  U. x }  ~<_  B )
73 domtr 7160 . . . . . . 7  |-  ( ( ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  /\  { y  |  E. x  e.  B  y  =  suc  U. x }  ~<_  B )  -> 
( cf `  A
)  ~<_  B )
7472, 73sylan2 461 . . . . . 6  |-  ( ( ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  /\  B  ~<  ( cf `  A ) )  ->  ( cf `  A
)  ~<_  B )
75 domnsym 7233 . . . . . 6  |-  ( ( cf `  A )  ~<_  B  ->  -.  B  ~<  ( cf `  A
) )
7674, 75syl 16 . . . . 5  |-  ( ( ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  /\  B  ~<  ( cf `  A ) )  ->  -.  B  ~<  ( cf `  A ) )
7776pm2.01da 430 . . . 4  |-  ( ( cf `  A )  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  ->  -.  B  ~<  ( cf `  A ) )
7877a1i 11 . . 3  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( ( cf `  A
)  ~<_  { y  |  E. x  e.  B  y  =  suc  U. x }  ->  -.  B  ~<  ( cf `  A ) ) )
7929, 50, 783syld 53 . 2  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( U. B  =  A  ->  -.  B  ~<  ( cf `  A
) ) )
8079necon2ad 2652 1  |-  ( ( Lim  A  /\  A. x  e.  B  (
x  C_  A  /\  x  ~<  ( cf `  A
) ) )  -> 
( B  ~<  ( cf `  A )  ->  U. B  =/=  A
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   {cab 2422    =/= wne 2599   A.wral 2705   E.wrex 2706   _Vcvv 2956    C_ wss 3320   U.cuni 4015   U_ciun 4093   class class class wbr 4212    e. cmpt 4266   Ord word 4580   Oncon0 4581   Lim wlim 4582   suc csuc 4583   dom cdm 4878   ran crn 4879    Fn wfn 5449   -onto->wfo 5452   ` cfv 5454    ~<_ cdom 7107    ~< csdm 7108   cardccrd 7822   cfccf 7824
This theorem is referenced by:  tskuni  8658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-iin 4096  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-er 6905  df-map 7020  df-en 7110  df-dom 7111  df-sdom 7112  df-card 7826  df-cf 7828  df-acn 7829
  Copyright terms: Public domain W3C validator