MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cfslbn Unicode version

Theorem cfslbn 7893
Description: Any subset of  A smaller than its cofinality has union less than  A. (This is the contrapositive to cfslb 7892.) (Contributed by Mario Carneiro, 24-Jun-2013.)
Hypothesis
Ref Expression
cfslb.1  |-  A  e. 
_V
Assertion
Ref Expression
cfslbn  |-  ( ( Lim  A  /\  B  C_  A  /\  B  ~<  ( cf `  A ) )  ->  U. B  e.  A )

Proof of Theorem cfslbn
StepHypRef Expression
1 uniss 3848 . . . . . . . 8  |-  ( B 
C_  A  ->  U. B  C_ 
U. A )
2 limuni 4452 . . . . . . . . 9  |-  ( Lim 
A  ->  A  =  U. A )
32sseq2d 3206 . . . . . . . 8  |-  ( Lim 
A  ->  ( U. B  C_  A  <->  U. B  C_  U. A ) )
41, 3syl5ibr 212 . . . . . . 7  |-  ( Lim 
A  ->  ( B  C_  A  ->  U. B  C_  A ) )
54imp 418 . . . . . 6  |-  ( ( Lim  A  /\  B  C_  A )  ->  U. B  C_  A )
6 limord 4451 . . . . . . . . . . . 12  |-  ( Lim 
A  ->  Ord  A )
7 ordsson 4581 . . . . . . . . . . . 12  |-  ( Ord 
A  ->  A  C_  On )
86, 7syl 15 . . . . . . . . . . 11  |-  ( Lim 
A  ->  A  C_  On )
9 sstr2 3186 . . . . . . . . . . 11  |-  ( B 
C_  A  ->  ( A  C_  On  ->  B  C_  On ) )
108, 9syl5com 26 . . . . . . . . . 10  |-  ( Lim 
A  ->  ( B  C_  A  ->  B  C_  On ) )
11 ssorduni 4577 . . . . . . . . . 10  |-  ( B 
C_  On  ->  Ord  U. B )
1210, 11syl6 29 . . . . . . . . 9  |-  ( Lim 
A  ->  ( B  C_  A  ->  Ord  U. B
) )
1312, 6jctird 528 . . . . . . . 8  |-  ( Lim 
A  ->  ( B  C_  A  ->  ( Ord  U. B  /\  Ord  A
) ) )
14 ordsseleq 4421 . . . . . . . 8  |-  ( ( Ord  U. B  /\  Ord  A )  ->  ( U. B  C_  A  <->  ( U. B  e.  A  \/  U. B  =  A ) ) )
1513, 14syl6 29 . . . . . . 7  |-  ( Lim 
A  ->  ( B  C_  A  ->  ( U. B  C_  A  <->  ( U. B  e.  A  \/  U. B  =  A ) ) ) )
1615imp 418 . . . . . 6  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( U. B  C_  A  <->  ( U. B  e.  A  \/  U. B  =  A ) ) )
175, 16mpbid 201 . . . . 5  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( U. B  e.  A  \/  U. B  =  A ) )
1817ord 366 . . . 4  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( -.  U. B  e.  A  ->  U. B  =  A ) )
19 cfslb.1 . . . . . . 7  |-  A  e. 
_V
2019cfslb 7892 . . . . . 6  |-  ( ( Lim  A  /\  B  C_  A  /\  U. B  =  A )  ->  ( cf `  A )  ~<_  B )
21 domnsym 6987 . . . . . 6  |-  ( ( cf `  A )  ~<_  B  ->  -.  B  ~<  ( cf `  A
) )
2220, 21syl 15 . . . . 5  |-  ( ( Lim  A  /\  B  C_  A  /\  U. B  =  A )  ->  -.  B  ~<  ( cf `  A
) )
23223expia 1153 . . . 4  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( U. B  =  A  ->  -.  B  ~<  ( cf `  A ) ) )
2418, 23syld 40 . . 3  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( -.  U. B  e.  A  ->  -.  B  ~<  ( cf `  A ) ) )
2524con4d 97 . 2  |-  ( ( Lim  A  /\  B  C_  A )  ->  ( B  ~<  ( cf `  A
)  ->  U. B  e.  A ) )
26253impia 1148 1  |-  ( ( Lim  A  /\  B  C_  A  /\  B  ~<  ( cf `  A ) )  ->  U. B  e.  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152   U.cuni 3827   class class class wbr 4023   Ord word 4391   Oncon0 4392   Lim wlim 4393   ` cfv 5255    ~<_ cdom 6861    ~< csdm 6862   cfccf 7570
This theorem is referenced by:  cfslb2n  7894
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-riota 6304  df-recs 6388  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-card 7572  df-cf 7574
  Copyright terms: Public domain W3C validator