Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cgrextend Structured version   Unicode version

Theorem cgrextend 25947
Description: Link congruence over a pair of line segments. Theorem 2.11 of [Schwabhauser] p. 29. (Contributed by Scott Fenton, 12-Jun-2013.)
Assertion
Ref Expression
cgrextend  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. ) )

Proof of Theorem cgrextend
StepHypRef Expression
1 opeq1 3986 . . . . . . . . 9  |-  ( A  =  B  ->  <. A ,  B >.  =  <. B ,  B >. )
21breq1d 4225 . . . . . . . 8  |-  ( A  =  B  ->  ( <. A ,  B >.Cgr <. D ,  E >.  <->  <. B ,  B >.Cgr <. D ,  E >. ) )
32adantr 453 . . . . . . 7  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  <->  <. B ,  B >.Cgr <. D ,  E >. ) )
4 simp1 958 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  N  e.  NN )
5 simp22 992 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  B  e.  ( EE `  N
) )
6 simp31 994 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  D  e.  ( EE `  N
) )
7 simp32 995 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  E  e.  ( EE `  N
) )
8 cgrid2 25942 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  ( B  e.  ( EE `  N )  /\  D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
) ) )  -> 
( <. B ,  B >.Cgr
<. D ,  E >.  ->  D  =  E )
)
94, 5, 6, 7, 8syl13anc 1187 . . . . . . . 8  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( <. B ,  B >.Cgr <. D ,  E >.  ->  D  =  E )
)
109adantl 454 . . . . . . 7  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( <. B ,  B >.Cgr
<. D ,  E >.  ->  D  =  E )
)
113, 10sylbid 208 . . . . . 6  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  ->  D  =  E )
)
12 opeq1 3986 . . . . . . . . 9  |-  ( A  =  B  ->  <. A ,  C >.  =  <. B ,  C >. )
13 opeq1 3986 . . . . . . . . 9  |-  ( D  =  E  ->  <. D ,  F >.  =  <. E ,  F >. )
1412, 13breqan12d 4230 . . . . . . . 8  |-  ( ( A  =  B  /\  D  =  E )  ->  ( <. A ,  C >.Cgr
<. D ,  F >.  <->  <. B ,  C >.Cgr <. E ,  F >. ) )
1514exbiri 607 . . . . . . 7  |-  ( A  =  B  ->  ( D  =  E  ->  (
<. B ,  C >.Cgr <. E ,  F >.  ->  <. A ,  C >.Cgr <. D ,  F >. ) ) )
1615adantr 453 . . . . . 6  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( D  =  E  ->  ( <. B ,  C >.Cgr <. E ,  F >.  ->  <. A ,  C >.Cgr
<. D ,  F >. ) ) )
1711, 16syld 43 . . . . 5  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  -> 
( <. B ,  C >.Cgr
<. E ,  F >.  ->  <. A ,  C >.Cgr <. D ,  F >. ) ) )
1817imp3a 422 . . . 4  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. )  ->  <. A ,  C >.Cgr
<. D ,  F >. ) )
1918adantld 455 . . 3  |-  ( ( A  =  B  /\  ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) ) )  -> 
( ( ( B 
Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. ) )
2019ex 425 . 2  |-  ( A  =  B  ->  (
( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. ) ) )
21 simpl1 961 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  N  e.  NN )
22 simpl21 1036 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  A  e.  ( EE `  N ) )
23 simpl22 1037 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  B  e.  ( EE `  N ) )
2421, 22, 233jca 1135 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) ) )
25 simpl23 1038 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  C  e.  ( EE `  N ) )
26 simpl31 1039 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  D  e.  ( EE `  N ) )
2725, 22, 263jca 1135 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )
28 simpl32 1040 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  E  e.  ( EE `  N ) )
29 simpl33 1041 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  F  e.  ( EE `  N ) )
3028, 29, 263jca 1135 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )
3124, 27, 303jca 1135 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( ( N  e.  NN  /\  A  e.  ( EE `  N
)  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) ) )
32 simprrl 742 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. ) )
33 simprrr 743 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )
34 cgrtriv 25941 . . . . . . . . . 10  |-  ( ( N  e.  NN  /\  A  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  ->  <. A ,  A >.Cgr <. D ,  D >. )
3521, 22, 26, 34syl3anc 1185 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  <. A ,  A >.Cgr <. D ,  D >. )
3633simpld 447 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  <. A ,  B >.Cgr <. D ,  E >. )
37 cgrcomlr 25937 . . . . . . . . . . 11  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N ) ) )  ->  ( <. A ,  B >.Cgr <. D ,  E >.  <->  <. B ,  A >.Cgr <. E ,  D >. ) )
3821, 22, 23, 26, 28, 37syl122anc 1194 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( <. A ,  B >.Cgr
<. D ,  E >.  <->  <. B ,  A >.Cgr <. E ,  D >. ) )
3936, 38mpbid 203 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  <. B ,  A >.Cgr <. E ,  D >. )
4035, 39jca 520 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( <. A ,  A >.Cgr
<. D ,  D >.  /\ 
<. B ,  A >.Cgr <. E ,  D >. ) )
41 brofs 25944 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  ( <. <. A ,  B >. ,  <. C ,  A >. >. 
OuterFiveSeg  <. <. D ,  E >. ,  <. F ,  D >. >. 
<->  ( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. )  /\  ( <. A ,  A >.Cgr <. D ,  D >.  /\  <. B ,  A >.Cgr
<. E ,  D >. ) ) ) )
4221, 22, 23, 25, 22, 26, 28, 29, 26, 41syl333anc 1217 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( <. <. A ,  B >. ,  <. C ,  A >. >. 
OuterFiveSeg  <. <. D ,  E >. ,  <. F ,  D >. >. 
<->  ( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. )  /\  ( <. A ,  A >.Cgr <. D ,  D >.  /\  <. B ,  A >.Cgr
<. E ,  D >. ) ) ) )
4332, 33, 40, 42mpbir3and 1138 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  <. <. A ,  B >. ,  <. C ,  A >. >. 
OuterFiveSeg  <. <. D ,  E >. ,  <. F ,  D >. >. )
44 simprl 734 . . . . . . 7  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  A  =/=  B )
4543, 44jca 520 . . . . . 6  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( <. <. A ,  B >. ,  <. C ,  A >. >. 
OuterFiveSeg  <. <. D ,  E >. ,  <. F ,  D >. >.  /\  A  =/=  B ) )
46 5segofs 25945 . . . . . 6  |-  ( ( ( N  e.  NN  /\  A  e.  ( EE
`  N )  /\  B  e.  ( EE `  N ) )  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N )  /\  D  e.  ( EE `  N
) )  /\  ( E  e.  ( EE `  N )  /\  F  e.  ( EE `  N
)  /\  D  e.  ( EE `  N ) ) )  ->  (
( <. <. A ,  B >. ,  <. C ,  A >. >. 
OuterFiveSeg  <. <. D ,  E >. ,  <. F ,  D >. >.  /\  A  =/=  B )  ->  <. C ,  A >.Cgr <. F ,  D >. ) )
4731, 45, 46sylc 59 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  <. C ,  A >.Cgr <. F ,  D >. )
48 cgrcomlr 25937 . . . . . 6  |-  ( ( N  e.  NN  /\  ( C  e.  ( EE `  N )  /\  A  e.  ( EE `  N ) )  /\  ( F  e.  ( EE `  N )  /\  D  e.  ( EE `  N ) ) )  ->  ( <. C ,  A >.Cgr <. F ,  D >.  <->  <. A ,  C >.Cgr <. D ,  F >. ) )
4921, 25, 22, 29, 26, 48syl122anc 1194 . . . . 5  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  -> 
( <. C ,  A >.Cgr
<. F ,  D >.  <->  <. A ,  C >.Cgr <. D ,  F >. ) )
5047, 49mpbid 203 . . . 4  |-  ( ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  /\  ( A  =/=  B  /\  (
( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\  <. B ,  C >.Cgr
<. E ,  F >. ) ) ) )  ->  <. A ,  C >.Cgr <. D ,  F >. )
5150exp32 590 . . 3  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  ( A  =/=  B  ->  (
( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. ) ) )
5251com12 30 . 2  |-  ( A  =/=  B  ->  (
( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N ) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. ) ) )
5320, 52pm2.61ine 2682 1  |-  ( ( N  e.  NN  /\  ( A  e.  ( EE `  N )  /\  B  e.  ( EE `  N )  /\  C  e.  ( EE `  N
) )  /\  ( D  e.  ( EE `  N )  /\  E  e.  ( EE `  N
)  /\  F  e.  ( EE `  N ) ) )  ->  (
( ( B  Btwn  <. A ,  C >.  /\  E  Btwn  <. D ,  F >. )  /\  ( <. A ,  B >.Cgr <. D ,  E >.  /\ 
<. B ,  C >.Cgr <. E ,  F >. ) )  ->  <. A ,  C >.Cgr <. D ,  F >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726    =/= wne 2601   <.cop 3819   class class class wbr 4215   ` cfv 5457   NNcn 10005   EEcee 25832    Btwn cbtwn 25833  Cgrccgr 25834    OuterFiveSeg cofs 25921
This theorem is referenced by:  cgrextendand  25948  segconeq  25949  lineext  26015  brofs2  26016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-n0 10227  df-z 10288  df-uz 10494  df-rp 10618  df-ico 10927  df-icc 10928  df-fz 11049  df-fzo 11141  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-sum 12485  df-ee 25835  df-btwn 25836  df-cgr 25837  df-ofs 25922
  Copyright terms: Public domain W3C validator