MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cgsexg Structured version   Unicode version

Theorem cgsexg 2979
Description: Implicit substitution inference for general classes. (Contributed by NM, 26-Aug-2007.)
Hypotheses
Ref Expression
cgsexg.1  |-  ( x  =  A  ->  ch )
cgsexg.2  |-  ( ch 
->  ( ph  <->  ps )
)
Assertion
Ref Expression
cgsexg  |-  ( A  e.  V  ->  ( E. x ( ch  /\  ph )  <->  ps ) )
Distinct variable groups:    x, A    ps, x
Allowed substitution hints:    ph( x)    ch( x)    V( x)

Proof of Theorem cgsexg
StepHypRef Expression
1 cgsexg.2 . . . 4  |-  ( ch 
->  ( ph  <->  ps )
)
21biimpa 471 . . 3  |-  ( ( ch  /\  ph )  ->  ps )
32exlimiv 1644 . 2  |-  ( E. x ( ch  /\  ph )  ->  ps )
4 elisset 2958 . . . 4  |-  ( A  e.  V  ->  E. x  x  =  A )
5 cgsexg.1 . . . . 5  |-  ( x  =  A  ->  ch )
65eximi 1585 . . . 4  |-  ( E. x  x  =  A  ->  E. x ch )
74, 6syl 16 . . 3  |-  ( A  e.  V  ->  E. x ch )
81biimprcd 217 . . . . 5  |-  ( ps 
->  ( ch  ->  ph )
)
98ancld 537 . . . 4  |-  ( ps 
->  ( ch  ->  ( ch  /\  ph ) ) )
109eximdv 1632 . . 3  |-  ( ps 
->  ( E. x ch 
->  E. x ( ch 
/\  ph ) ) )
117, 10syl5com 28 . 2  |-  ( A  e.  V  ->  ( ps  ->  E. x ( ch 
/\  ph ) ) )
123, 11impbid2 196 1  |-  ( A  e.  V  ->  ( E. x ( ch  /\  ph )  <->  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550    = wceq 1652    e. wcel 1725
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-an 361  df-ex 1551  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-v 2950
  Copyright terms: Public domain W3C validator