MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chebbnd1lem2 Unicode version

Theorem chebbnd1lem2 20635
Description: Lemma for chebbnd1 20637: Show that  log ( N )  /  N does not change too much between  N and  M  =  |_ ( N  /  2
). (Contributed by Mario Carneiro, 22-Sep-2014.)
Hypothesis
Ref Expression
chebbnd1lem2.1  |-  M  =  ( |_ `  ( N  /  2 ) )
Assertion
Ref Expression
chebbnd1lem2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  <  ( 2  x.  ( ( log `  N
)  /  N ) ) )

Proof of Theorem chebbnd1lem2
StepHypRef Expression
1 2rp 10375 . . . . 5  |-  2  e.  RR+
2 4nn 9895 . . . . . . 7  |-  4  e.  NN
32nnzi 10063 . . . . . . . . 9  |-  4  e.  ZZ
43a1i 10 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  e.  ZZ )
5 chebbnd1lem2.1 . . . . . . . . 9  |-  M  =  ( |_ `  ( N  /  2 ) )
6 rehalfcl 9954 . . . . . . . . . . 11  |-  ( N  e.  RR  ->  ( N  /  2 )  e.  RR )
76adantr 451 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( N  /  2
)  e.  RR )
87flcld 10946 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( |_ `  ( N  /  2 ) )  e.  ZZ )
95, 8syl5eqel 2380 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  ZZ )
10 4t2e8 9890 . . . . . . . . . . . 12  |-  ( 4  x.  2 )  =  8
11 simpr 447 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
8  <_  N )
1210, 11syl5eqbr 4072 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 4  x.  2 )  <_  N )
13 4re 9835 . . . . . . . . . . . . 13  |-  4  e.  RR
1413a1i 10 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  e.  RR )
15 simpl 443 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  N  e.  RR )
16 2re 9831 . . . . . . . . . . . . 13  |-  2  e.  RR
1716a1i 10 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  e.  RR )
18 2pos 9844 . . . . . . . . . . . . 13  |-  0  <  2
1918a1i 10 . . . . . . . . . . . 12  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  2 )
20 lemuldiv 9651 . . . . . . . . . . . 12  |-  ( ( 4  e.  RR  /\  N  e.  RR  /\  (
2  e.  RR  /\  0  <  2 ) )  ->  ( ( 4  x.  2 )  <_  N 
<->  4  <_  ( N  /  2 ) ) )
2114, 15, 17, 19, 20syl112anc 1186 . . . . . . . . . . 11  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 4  x.  2 )  <_  N  <->  4  <_  ( N  / 
2 ) ) )
2212, 21mpbid 201 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  <_  ( N  /  2 ) )
23 flge 10953 . . . . . . . . . . 11  |-  ( ( ( N  /  2
)  e.  RR  /\  4  e.  ZZ )  ->  ( 4  <_  ( N  /  2 )  <->  4  <_  ( |_ `  ( N  /  2 ) ) ) )
247, 3, 23sylancl 643 . . . . . . . . . 10  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 4  <_  ( N  /  2 )  <->  4  <_  ( |_ `  ( N  /  2 ) ) ) )
2522, 24mpbid 201 . . . . . . . . 9  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  <_  ( |_ `  ( N  /  2
) ) )
2625, 5syl6breqr 4079 . . . . . . . 8  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
4  <_  M )
27 eluz2 10252 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  4
)  <->  ( 4  e.  ZZ  /\  M  e.  ZZ  /\  4  <_  M ) )
284, 9, 26, 27syl3anbrc 1136 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  ( ZZ>= ` 
4 ) )
29 nnuz 10279 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
3029uztrn2 10261 . . . . . . 7  |-  ( ( 4  e.  NN  /\  M  e.  ( ZZ>= ` 
4 ) )  ->  M  e.  NN )
312, 28, 30sylancr 644 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  NN )
3231nnrpd 10405 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  RR+ )
33 rpmulcl 10391 . . . . 5  |-  ( ( 2  e.  RR+  /\  M  e.  RR+ )  ->  (
2  x.  M )  e.  RR+ )
341, 32, 33sylancr 644 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  RR+ )
3534relogcld 19990 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  (
2  x.  M ) )  e.  RR )
3635, 34rerpdivcld 10433 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  e.  RR )
37 0re 8854 . . . . . . . 8  |-  0  e.  RR
3837a1i 10 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  e.  RR )
39 8re 9840 . . . . . . . 8  |-  8  e.  RR
4039a1i 10 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
8  e.  RR )
41 8pos 9852 . . . . . . . 8  |-  0  <  8
4241a1i 10 . . . . . . 7  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  8 )
4338, 40, 15, 42, 11ltletrd 8992 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
0  <  N )
4415, 43elrpd 10404 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  N  e.  RR+ )
4544rphalfcld 10418 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( N  /  2
)  e.  RR+ )
4645relogcld 19990 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  ( N  /  2 ) )  e.  RR )
4746, 45rerpdivcld 10433 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  ( N  /  2 ) )  /  ( N  / 
2 ) )  e.  RR )
4844relogcld 19990 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  N
)  e.  RR )
4948, 44rerpdivcld 10433 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  N
)  /  N )  e.  RR )
50 remulcl 8838 . . 3  |-  ( ( 2  e.  RR  /\  ( ( log `  N
)  /  N )  e.  RR )  -> 
( 2  x.  (
( log `  N
)  /  N ) )  e.  RR )
5116, 49, 50sylancr 644 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  (
( log `  N
)  /  N ) )  e.  RR )
529zred 10133 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  RR )
53 peano2re 9001 . . . . 5  |-  ( M  e.  RR  ->  ( M  +  1 )  e.  RR )
5452, 53syl 15 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( M  +  1 )  e.  RR )
55 remulcl 8838 . . . . 5  |-  ( ( 2  e.  RR  /\  M  e.  RR )  ->  ( 2  x.  M
)  e.  RR )
5616, 52, 55sylancr 644 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  e.  RR )
57 flltp1 10948 . . . . . 6  |-  ( ( N  /  2 )  e.  RR  ->  ( N  /  2 )  < 
( ( |_ `  ( N  /  2
) )  +  1 ) )
587, 57syl 15 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( N  /  2
)  <  ( ( |_ `  ( N  / 
2 ) )  +  1 ) )
595oveq1i 5884 . . . . 5  |-  ( M  +  1 )  =  ( ( |_ `  ( N  /  2
) )  +  1 )
6058, 59syl6breqr 4079 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( N  /  2
)  <  ( M  +  1 ) )
61 1re 8853 . . . . . . 7  |-  1  e.  RR
6261a1i 10 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  e.  RR )
6331nnge1d 9804 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
1  <_  M )
6462, 52, 52, 63leadd2dd 9403 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( M  +  1 )  <_  ( M  +  M ) )
6552recnd 8877 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  M  e.  CC )
66652timesd 9970 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( 2  x.  M
)  =  ( M  +  M ) )
6764, 66breqtrrd 4065 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( M  +  1 )  <_  ( 2  x.  M ) )
687, 54, 56, 60, 67ltletrd 8992 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( N  /  2
)  <  ( 2  x.  M ) )
69 ere 12386 . . . . . 6  |-  _e  e.  RR
7069a1i 10 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  e.  RR )
71 egt2lt3 12500 . . . . . . . . 9  |-  ( 2  <  _e  /\  _e  <  3 )
7271simpri 448 . . . . . . . 8  |-  _e  <  3
73 3lt4 9905 . . . . . . . 8  |-  3  <  4
74 3re 9833 . . . . . . . . 9  |-  3  e.  RR
7569, 74, 13lttri 8961 . . . . . . . 8  |-  ( ( _e  <  3  /\  3  <  4 )  ->  _e  <  4
)
7672, 73, 75mp2an 653 . . . . . . 7  |-  _e  <  4
7776a1i 10 . . . . . 6  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <  4 )
7870, 14, 7, 77, 22ltletrd 8992 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <  ( N  / 
2 ) )
7970, 7, 78ltled 8983 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <_  ( N  / 
2 ) )
8070, 7, 56, 78, 68lttrd 8993 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <  ( 2  x.  M ) )
8170, 56, 80ltled 8983 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  _e  <_  ( 2  x.  M ) )
82 logdivlt 19988 . . . 4  |-  ( ( ( ( N  / 
2 )  e.  RR  /\  _e  <_  ( N  /  2 ) )  /\  ( ( 2  x.  M )  e.  RR  /\  _e  <_  ( 2  x.  M ) ) )  ->  (
( N  /  2
)  <  ( 2  x.  M )  <->  ( ( log `  ( 2  x.  M ) )  / 
( 2  x.  M
) )  <  (
( log `  ( N  /  2 ) )  /  ( N  / 
2 ) ) ) )
837, 79, 56, 81, 82syl22anc 1183 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( N  / 
2 )  <  (
2  x.  M )  <-> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  <  ( ( log `  ( N  /  2
) )  /  ( N  /  2 ) ) ) )
8468, 83mpbid 201 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  <  ( ( log `  ( N  /  2
) )  /  ( N  /  2 ) ) )
85 rphalflt 10396 . . . . . 6  |-  ( N  e.  RR+  ->  ( N  /  2 )  < 
N )
8644, 85syl 15 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( N  /  2
)  <  N )
87 logltb 19969 . . . . . 6  |-  ( ( ( N  /  2
)  e.  RR+  /\  N  e.  RR+ )  ->  (
( N  /  2
)  <  N  <->  ( log `  ( N  /  2
) )  <  ( log `  N ) ) )
8845, 44, 87syl2anc 642 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( N  / 
2 )  <  N  <->  ( log `  ( N  /  2 ) )  <  ( log `  N
) ) )
8986, 88mpbid 201 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  ( N  /  2 ) )  <  ( log `  N
) )
9046, 48, 45, 89ltdiv1dd 10459 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  ( N  /  2 ) )  /  ( N  / 
2 ) )  < 
( ( log `  N
)  /  ( N  /  2 ) ) )
9148recnd 8877 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( log `  N
)  e.  CC )
9215recnd 8877 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  N  e.  CC )
9317recnd 8877 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  e.  CC )
9444rpne0d 10411 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  ->  N  =/=  0 )
95 2ne0 9845 . . . . . 6  |-  2  =/=  0
9695a1i 10 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
2  =/=  0 )
9791, 92, 93, 94, 96divdiv2d 9584 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  N
)  /  ( N  /  2 ) )  =  ( ( ( log `  N )  x.  2 )  /  N ) )
9891, 93mulcomd 8872 . . . . 5  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  N
)  x.  2 )  =  ( 2  x.  ( log `  N
) ) )
9998oveq1d 5889 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( ( log `  N )  x.  2 )  /  N )  =  ( ( 2  x.  ( log `  N
) )  /  N
) )
10093, 91, 92, 94divassd 9587 . . . 4  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( 2  x.  ( log `  N
) )  /  N
)  =  ( 2  x.  ( ( log `  N )  /  N
) ) )
10197, 99, 1003eqtrd 2332 . . 3  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  N
)  /  ( N  /  2 ) )  =  ( 2  x.  ( ( log `  N
)  /  N ) ) )
10290, 101breqtrd 4063 . 2  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  ( N  /  2 ) )  /  ( N  / 
2 ) )  < 
( 2  x.  (
( log `  N
)  /  N ) ) )
10336, 47, 51, 84, 102lttrd 8993 1  |-  ( ( N  e.  RR  /\  8  <_  N )  -> 
( ( log `  (
2  x.  M ) )  /  ( 2  x.  M ) )  <  ( 2  x.  ( ( log `  N
)  /  N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1632    e. wcel 1696    =/= wne 2459   class class class wbr 4039   ` cfv 5271  (class class class)co 5874   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    / cdiv 9439   NNcn 9762   2c2 9811   3c3 9812   4c4 9813   8c8 9817   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   |_cfl 10940   _eceu 12360   logclog 19928
This theorem is referenced by:  chebbnd1lem3  20636
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-e 12366  df-sin 12367  df-cos 12368  df-pi 12370  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930
  Copyright terms: Public domain W3C validator