HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chelii Structured version   Unicode version

Theorem chelii 22736
Description: A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
chssi.1  |-  H  e. 
CH
cheli.1  |-  A  e.  H
Assertion
Ref Expression
chelii  |-  A  e. 
~H

Proof of Theorem chelii
StepHypRef Expression
1 chssi.1 . . 3  |-  H  e. 
CH
21chssii 22734 . 2  |-  H  C_  ~H
3 cheli.1 . 2  |-  A  e.  H
42, 3sselii 3345 1  |-  A  e. 
~H
Colors of variables: wff set class
Syntax hints:    e. wcel 1725   ~Hchil 22422   CHcch 22432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-hilex 22502
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-xp 4884  df-cnv 4886  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fv 5462  df-ov 6084  df-sh 22709  df-ch 22724
  Copyright terms: Public domain W3C validator