HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chle0 Unicode version

Theorem chle0 22038
Description: No Hilbert lattice element is smaller than zero. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.)
Assertion
Ref Expression
chle0  |-  ( A  e.  CH  ->  ( A  C_  0H  <->  A  =  0H ) )

Proof of Theorem chle0
StepHypRef Expression
1 chsh 21820 . 2  |-  ( A  e.  CH  ->  A  e.  SH )
2 shle0 22037 . 2  |-  ( A  e.  SH  ->  ( A  C_  0H  <->  A  =  0H ) )
31, 2syl 15 1  |-  ( A  e.  CH  ->  ( A  C_  0H  <->  A  =  0H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    = wceq 1632    e. wcel 1696    C_ wss 3165   SHcsh 21524   CHcch 21525   0Hc0h 21531
This theorem is referenced by:  chle0i  22047  chssoc  22091  hatomistici  22958  atcvat4i  22993
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-hilex 21595
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-xp 4711  df-cnv 4713  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fv 5279  df-ov 5877  df-sh 21802  df-ch 21817  df-ch0 21848
  Copyright terms: Public domain W3C validator