Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  chnlen0 Structured version   Unicode version

Theorem chnlen0 22938
 Description: A Hilbert lattice element that is not a subset of another is nonzero. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chnlen0

Proof of Theorem chnlen0
StepHypRef Expression
1 ch0le 22935 . . 3
2 sseq1 3361 . . 3
31, 2syl5ibrcom 214 . 2
43con3d 127 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wceq 1652   wcel 1725   wss 3312  cch 22424  c0h 22430 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-hilex 22494 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-xp 4876  df-cnv 4878  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fv 5454  df-ov 6076  df-sh 22701  df-ch 22716  df-ch0 22747
 Copyright terms: Public domain W3C validator