HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chnlen0 Unicode version

Theorem chnlen0 22023
Description: A Hilbert lattice element that is not a subset of another is nonzero. (Contributed by NM, 30-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
chnlen0  |-  ( B  e.  CH  ->  ( -.  A  C_  B  ->  -.  A  =  0H ) )

Proof of Theorem chnlen0
StepHypRef Expression
1 ch0le 22020 . . 3  |-  ( B  e.  CH  ->  0H  C_  B )
2 sseq1 3199 . . 3  |-  ( A  =  0H  ->  ( A  C_  B  <->  0H  C_  B
) )
31, 2syl5ibrcom 213 . 2  |-  ( B  e.  CH  ->  ( A  =  0H  ->  A 
C_  B ) )
43con3d 125 1  |-  ( B  e.  CH  ->  ( -.  A  C_  B  ->  -.  A  =  0H ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1623    e. wcel 1684    C_ wss 3152   CHcch 21509   0Hc0h 21515
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-hilex 21579
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-xp 4695  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fv 5263  df-ov 5861  df-sh 21786  df-ch 21801  df-ch0 21832
  Copyright terms: Public domain W3C validator