HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocnul Structured version   Unicode version

Theorem chocnul 22835
Description: Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.)
Assertion
Ref Expression
chocnul  |-  ( _|_ `  (/) )  =  ~H

Proof of Theorem chocnul
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 3734 . . 3  |-  A. y  e.  (/)  ( x  .ih  y )  =  0
2 0ss 3658 . . . 4  |-  (/)  C_  ~H
3 ocel 22788 . . . 4  |-  ( (/)  C_ 
~H  ->  ( x  e.  ( _|_ `  (/) )  <->  ( x  e.  ~H  /\  A. y  e.  (/)  ( x  .ih  y )  =  0 ) ) )
42, 3ax-mp 5 . . 3  |-  ( x  e.  ( _|_ `  (/) )  <->  ( x  e.  ~H  /\  A. y  e.  (/)  ( x  .ih  y )  =  0 ) )
51, 4mpbiran2 887 . 2  |-  ( x  e.  ( _|_ `  (/) )  <->  x  e.  ~H )
65eqriv 2435 1  |-  ( _|_ `  (/) )  =  ~H
Colors of variables: wff set class
Syntax hints:    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707    C_ wss 3322   (/)c0 3630   ` cfv 5457  (class class class)co 6084   0cc0 8995   ~Hchil 22427    .ih csp 22430   _|_cort 22438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4333  ax-nul 4341  ax-pr 4406  ax-hilex 22507
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-iota 5421  df-fun 5459  df-fv 5465  df-ov 6087  df-oc 22759
  Copyright terms: Public domain W3C validator