HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocnul Unicode version

Theorem chocnul 21907
Description: Orthogonal complement of the empty set. (Contributed by NM, 31-Oct-2000.) (New usage is discouraged.)
Assertion
Ref Expression
chocnul  |-  ( _|_ `  (/) )  =  ~H

Proof of Theorem chocnul
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ral0 3558 . . 3  |-  A. y  e.  (/)  ( x  .ih  y )  =  0
2 0ss 3483 . . . 4  |-  (/)  C_  ~H
3 ocel 21860 . . . 4  |-  ( (/)  C_ 
~H  ->  ( x  e.  ( _|_ `  (/) )  <->  ( x  e.  ~H  /\  A. y  e.  (/)  ( x  .ih  y )  =  0 ) ) )
42, 3ax-mp 8 . . 3  |-  ( x  e.  ( _|_ `  (/) )  <->  ( x  e.  ~H  /\  A. y  e.  (/)  ( x  .ih  y )  =  0 ) )
51, 4mpbiran2 885 . 2  |-  ( x  e.  ( _|_ `  (/) )  <->  x  e.  ~H )
65eqriv 2280 1  |-  ( _|_ `  (/) )  =  ~H
Colors of variables: wff set class
Syntax hints:    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   (/)c0 3455   ` cfv 5255  (class class class)co 5858   0cc0 8737   ~Hchil 21499    .ih csp 21502   _|_cort 21510
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-hilex 21579
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-oc 21831
  Copyright terms: Public domain W3C validator