Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocvali Unicode version

Theorem chocvali 21878
 Description: Value of the orthogonal complement of a Hilbert lattice element. The orthogonal complement of is the set of vectors that are orthogonal to all vectors in . (Contributed by NM, 8-Aug-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
chocval.1
Assertion
Ref Expression
chocvali
Distinct variable group:   ,,

Proof of Theorem chocvali
StepHypRef Expression
1 chocval.1 . . 3
21chssii 21811 . 2
3 ocval 21859 . 2
42, 3ax-mp 8 1
 Colors of variables: wff set class Syntax hints:   wceq 1623   wcel 1684  wral 2543  crab 2547   wss 3152  cfv 5255  (class class class)co 5858  cc0 8737  chil 21499   csp 21502  cch 21509  cort 21510 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-hilex 21579 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-sh 21786  df-ch 21801  df-oc 21831
 Copyright terms: Public domain W3C validator