HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chocvali Unicode version

Theorem chocvali 21878
Description: Value of the orthogonal complement of a Hilbert lattice element. The orthogonal complement of  A is the set of vectors that are orthogonal to all vectors in  A. (Contributed by NM, 8-Aug-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
chocval.1  |-  A  e. 
CH
Assertion
Ref Expression
chocvali  |-  ( _|_ `  A )  =  {
x  e.  ~H  |  A. y  e.  A  ( x  .ih  y )  =  0 }
Distinct variable group:    x, y, A

Proof of Theorem chocvali
StepHypRef Expression
1 chocval.1 . . 3  |-  A  e. 
CH
21chssii 21811 . 2  |-  A  C_  ~H
3 ocval 21859 . 2  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  =  {
x  e.  ~H  |  A. y  e.  A  ( x  .ih  y )  =  0 } )
42, 3ax-mp 8 1  |-  ( _|_ `  A )  =  {
x  e.  ~H  |  A. y  e.  A  ( x  .ih  y )  =  0 }
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   A.wral 2543   {crab 2547    C_ wss 3152   ` cfv 5255  (class class class)co 5858   0cc0 8737   ~Hchil 21499    .ih csp 21502   CHcch 21509   _|_cort 21510
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214  ax-hilex 21579
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-sh 21786  df-ch 21801  df-oc 21831
  Copyright terms: Public domain W3C validator