MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpchtsum Structured version   Unicode version

Theorem chpchtsum 20995
Description: The second Chebyshev function is the sum of the theta function at arguments quickly approaching zero. (This is usually stated as an infinite sum, but after a certain point, the terms are all zero, and it is easier for us to use an explicit finite sum.) (Contributed by Mario Carneiro, 7-Apr-2016.)
Assertion
Ref Expression
chpchtsum  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) ) (
theta `  ( A  ^ c  ( 1  / 
k ) ) ) )
Distinct variable group:    A, k

Proof of Theorem chpchtsum
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 fzfid 11304 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin )
2 inss2 3554 . . . . . . . . . 10  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
3 simpr 448 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
42, 3sseldi 3338 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
5 prmnn 13074 . . . . . . . . 9  |-  ( p  e.  Prime  ->  p  e.  NN )
64, 5syl 16 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  NN )
76nnrpd 10639 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR+ )
87relogcld 20510 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR )
98recnd 9106 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  CC )
10 fsumconst 12565 . . . . 5  |-  ( ( ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  Fin  /\  ( log `  p
)  e.  CC )  ->  sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p )  =  ( ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) ) )
111, 9, 10syl2anc 643 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( log `  p
)  =  ( (
# `  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) ) )
12 simpl 444 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  A  e.  RR )
13 1re 9082 . . . . . . . . . . . 12  |-  1  e.  RR
1413a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  e.  RR )
156nnred 10007 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR )
16 prmuz2 13089 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
174, 16syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( ZZ>= ` 
2 ) )
18 eluz2b2 10540 . . . . . . . . . . . . 13  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
1918simprbi 451 . . . . . . . . . . . 12  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
2017, 19syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <  p )
21 inss1 3553 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] A )  i^i  Prime )  C_  (
0 [,] A )
2221, 3sseldi 3338 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  ( 0 [,] A ) )
23 0re 9083 . . . . . . . . . . . . . 14  |-  0  e.  RR
24 elicc2 10967 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
2523, 12, 24sylancr 645 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
2622, 25mpbid 202 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) )
2726simp3d 971 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  <_  A )
2814, 15, 12, 20, 27ltletrd 9222 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
1  <  A )
2912, 28rplogcld 20516 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  A
)  e.  RR+ )
3015, 20rplogcld 20516 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR+ )
3129, 30rpdivcld 10657 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR+ )
3231rpred 10640 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR )
3331rpge0d 10644 . . . . . . 7  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <_  ( ( log `  A )  / 
( log `  p
) ) )
34 flge0nn0 11217 . . . . . . 7  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  0  <_ 
( ( log `  A
)  /  ( log `  p ) ) )  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  NN0 )
3532, 33, 34syl2anc 643 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  NN0 )
36 hashfz1 11622 . . . . . 6  |-  ( ( |_ `  ( ( log `  A )  /  ( log `  p
) ) )  e. 
NN0  ->  ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  =  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) )
3735, 36syl 16 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( # `  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  =  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) )
3837oveq1d 6088 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( # `  (
1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  x.  ( log `  p ) )  =  ( ( |_
`  ( ( log `  A )  /  ( log `  p ) ) )  x.  ( log `  p ) ) )
3932flcld 11199 . . . . . 6  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  ZZ )
4039zcnd 10368 . . . . 5  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  CC )
4140, 9mulcomd 9101 . . . 4  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  x.  ( log `  p
) )  =  ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )
4211, 38, 413eqtrrd 2472 . . 3  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  sum_ k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ( log `  p
) )
4342sumeq2dv 12489 . 2  |-  ( A  e.  RR  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p ) )
44 chpval2 20994 . 2  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
45 simpl 444 . . . . . 6  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  A  e.  RR )
4623a1i 11 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  e.  RR )
4713a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  e.  RR )
48 0lt1 9542 . . . . . . . . 9  |-  0  <  1
4948a1i 11 . . . . . . . 8  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <  1
)
50 elfzuz2 11054 . . . . . . . . 9  |-  ( k  e.  ( 1 ... ( |_ `  A
) )  ->  ( |_ `  A )  e.  ( ZZ>= `  1 )
)
51 eluzle 10490 . . . . . . . . . . 11  |-  ( ( |_ `  A )  e.  ( ZZ>= `  1
)  ->  1  <_  ( |_ `  A ) )
5251adantl 453 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  1  <_  ( |_ `  A
) )
53 simpl 444 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  A  e.  RR )
54 1z 10303 . . . . . . . . . . 11  |-  1  e.  ZZ
55 flge 11206 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  e.  ZZ )  ->  ( 1  <_  A  <->  1  <_  ( |_ `  A ) ) )
5653, 54, 55sylancl 644 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  (
1  <_  A  <->  1  <_  ( |_ `  A ) ) )
5752, 56mpbird 224 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( |_ `  A )  e.  ( ZZ>= `  1
) )  ->  1  <_  A )
5850, 57sylan2 461 . . . . . . . 8  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  1  <_  A
)
5946, 47, 45, 49, 58ltletrd 9222 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <  A
)
6046, 45, 59ltled 9213 . . . . . 6  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  0  <_  A
)
61 elfznn 11072 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( |_ `  A
) )  ->  k  e.  NN )
6261adantl 453 . . . . . . 7  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  k  e.  NN )
6362nnrecred 10037 . . . . . 6  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( 1  / 
k )  e.  RR )
6445, 60, 63recxpcld 20606 . . . . 5  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( A  ^ c  ( 1  / 
k ) )  e.  RR )
65 chtval 20885 . . . . 5  |-  ( ( A  ^ c  ( 1  /  k ) )  e.  RR  ->  (
theta `  ( A  ^ c  ( 1  / 
k ) ) )  =  sum_ p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
( log `  p
) )
6664, 65syl 16 . . . 4  |-  ( ( A  e.  RR  /\  k  e.  ( 1 ... ( |_ `  A ) ) )  ->  ( theta `  ( A  ^ c  ( 1  /  k ) ) )  =  sum_ p  e.  ( ( 0 [,] ( A  ^ c 
( 1  /  k
) ) )  i^i 
Prime ) ( log `  p
) )
6766sumeq2dv 12489 . . 3  |-  ( A  e.  RR  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) ( theta `  ( A  ^ c  ( 1  /  k ) ) )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) )
sum_ p  e.  (
( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
( log `  p
) )
68 ppifi 20880 . . . 4  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
69 fzfid 11304 . . . 4  |-  ( A  e.  RR  ->  (
1 ... ( |_ `  A ) )  e. 
Fin )
702sseli 3336 . . . . . . . 8  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  ->  p  e. 
Prime )
71 elfznn 11072 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( |_ `  (
( log `  A
)  /  ( log `  p ) ) ) )  ->  k  e.  NN )
7270, 71anim12i 550 . . . . . . 7  |-  ( ( p  e.  ( ( 0 [,] A )  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )  -> 
( p  e.  Prime  /\  k  e.  NN ) )
7372a1i 11 . . . . . 6  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
p  e.  Prime  /\  k  e.  NN ) ) )
7423a1i 11 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  e.  RR )
752a1i 11 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  C_  Prime )
7675sselda 3340 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  Prime )
7776, 5syl 16 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  NN )
7877nnred 10007 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  ->  p  e.  RR )
7977nngt0d 10035 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  p )
8074, 78, 12, 79, 27ltletrd 9222 . . . . . . . 8  |-  ( ( A  e.  RR  /\  p  e.  ( (
0 [,] A )  i^i  Prime ) )  -> 
0  <  A )
8180ex 424 . . . . . . 7  |-  ( A  e.  RR  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  ->  0  <  A ) )
8281adantrd 455 . . . . . 6  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  0  <  A ) )
8373, 82jcad 520 . . . . 5  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  ->  (
( p  e.  Prime  /\  k  e.  NN )  /\  0  <  A
) ) )
84 inss2 3554 . . . . . . . . 9  |-  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )  C_ 
Prime
8584sseli 3336 . . . . . . . 8  |-  ( p  e.  ( ( 0 [,] ( A  ^ c  ( 1  / 
k ) ) )  i^i  Prime )  ->  p  e.  Prime )
8661, 85anim12ci 551 . . . . . . 7  |-  ( ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( (
0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  ( p  e.  Prime  /\  k  e.  NN ) )
8786a1i 11 . . . . . 6  |-  ( A  e.  RR  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  ( p  e.  Prime  /\  k  e.  NN ) ) )
8859ex 424 . . . . . . 7  |-  ( A  e.  RR  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  -> 
0  <  A )
)
8988adantrd 455 . . . . . 6  |-  ( A  e.  RR  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  0  <  A ) )
9087, 89jcad 520 . . . . 5  |-  ( A  e.  RR  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
)  ->  ( (
p  e.  Prime  /\  k  e.  NN )  /\  0  <  A ) ) )
91 elin 3522 . . . . . . . . 9  |-  ( p  e.  ( ( 0 [,] A )  i^i 
Prime )  <->  ( p  e.  ( 0 [,] A
)  /\  p  e.  Prime ) )
92 simprll 739 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  Prime )
9392biantrud 494 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] A )  <->  ( p  e.  ( 0 [,] A
)  /\  p  e.  Prime ) ) )
9423a1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  e.  RR )
95 simpl 444 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  A  e.  RR )
9692, 5syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  NN )
9796nnred 10007 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  RR )
9896nnnn0d 10266 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  NN0 )
9998nn0ge0d 10269 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <_  p )
100 df-3an 938 . . . . . . . . . . . . 13  |-  ( ( p  e.  RR  /\  0  <_  p  /\  p  <_  A )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  A ) )
10124, 100syl6bb 253 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( ( p  e.  RR  /\  0  <_  p )  /\  p  <_  A ) ) )
102101baibd 876 . . . . . . . . . . 11  |-  ( ( ( 0  e.  RR  /\  A  e.  RR )  /\  ( p  e.  RR  /\  0  <_  p ) )  -> 
( p  e.  ( 0 [,] A )  <-> 
p  <_  A )
)
10394, 95, 97, 99, 102syl22anc 1185 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] A )  <->  p  <_  A ) )
10493, 103bitr3d 247 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( 0 [,] A )  /\  p  e.  Prime )  <-> 
p  <_  A )
)
10591, 104syl5bb 249 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( ( 0 [,] A )  i^i  Prime )  <->  p  <_  A ) )
106 simprr 734 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <  A )
10795, 106elrpd 10638 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  A  e.  RR+ )
108107relogcld 20510 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( log `  A )  e.  RR )
10992, 16syl 16 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  ( ZZ>= `  2 )
)
110109, 19syl 16 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  1  <  p )
11197, 110rplogcld 20516 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( log `  p )  e.  RR+ )
112108, 111rerpdivcld 10667 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( log `  A
)  /  ( log `  p ) )  e.  RR )
113 simprlr 740 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  NN )
114113nnzd 10366 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  ZZ )
115 flge 11206 . . . . . . . . . 10  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  k  e.  ZZ )  ->  (
k  <_  ( ( log `  A )  / 
( log `  p
) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
116112, 114, 115syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  <_  ( ( log `  A )  / 
( log `  p
) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
117113nnnn0d 10266 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  NN0 )
11896, 117nnexpcld 11536 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ k )  e.  NN )
119118nnrpd 10639 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ k )  e.  RR+ )
120119, 107logled 20514 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  ( log `  ( p ^ k
) )  <_  ( log `  A ) ) )
12196nnrpd 10639 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  RR+ )
122 relogexp 20482 . . . . . . . . . . . 12  |-  ( ( p  e.  RR+  /\  k  e.  ZZ )  ->  ( log `  ( p ^
k ) )  =  ( k  x.  ( log `  p ) ) )
123121, 114, 122syl2anc 643 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( log `  ( p ^
k ) )  =  ( k  x.  ( log `  p ) ) )
124123breq1d 4214 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( log `  (
p ^ k ) )  <_  ( log `  A )  <->  ( k  x.  ( log `  p
) )  <_  ( log `  A ) ) )
125113nnred 10007 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  RR )
126125, 108, 111lemuldivd 10685 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( k  x.  ( log `  p ) )  <_  ( log `  A
)  <->  k  <_  (
( log `  A
)  /  ( log `  p ) ) ) )
127120, 124, 1263bitrd 271 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  k  <_  ( ( log `  A
)  /  ( log `  p ) ) ) )
128 nnuz 10513 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
129113, 128syl6eleq 2525 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  ( ZZ>= `  1 )
)
130112flcld 11199 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) )  e.  ZZ )
131 elfz5 11043 . . . . . . . . . 10  |-  ( ( k  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) )  e.  ZZ )  ->  ( k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p
) ) ) ) )
132129, 130, 131syl2anc 643 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  <->  k  <_  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
133116, 127, 1323bitr4rd 278 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  <->  ( p ^
k )  <_  A
) )
134105, 133anbi12d 692 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( p  <_  A  /\  ( p ^ k )  <_  A ) ) )
13595flcld 11199 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( |_ `  A )  e.  ZZ )
136 elfz5 11043 . . . . . . . . . . 11  |-  ( ( k  e.  ( ZZ>= ` 
1 )  /\  ( |_ `  A )  e.  ZZ )  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  k  <_  ( |_ `  A ) ) )
137129, 135, 136syl2anc 643 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  k  <_  ( |_ `  A ) ) )
138 flge 11206 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  k  e.  ZZ )  ->  ( k  <_  A  <->  k  <_  ( |_ `  A ) ) )
13995, 114, 138syl2anc 643 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  <_  A  <->  k  <_  ( |_ `  A ) ) )
140137, 139bitr4d 248 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
k  e.  ( 1 ... ( |_ `  A ) )  <->  k  <_  A ) )
141 elin 3522 . . . . . . . . . 10  |-  ( p  e.  ( ( 0 [,] ( A  ^ c  ( 1  / 
k ) ) )  i^i  Prime )  <->  ( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  /\  p  e. 
Prime ) )
14292biantrud 494 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] ( A  ^ c  ( 1  / 
k ) ) )  <-> 
( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  /\  p  e. 
Prime ) ) )
143107rpge0d 10644 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <_  A )
144113nnrecred 10037 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
1  /  k )  e.  RR )
14595, 143, 144recxpcld 20606 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^ c  ( 1  /  k ) )  e.  RR )
146 elicc2 10967 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR  /\  ( A  ^ c 
( 1  /  k
) )  e.  RR )  ->  ( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( A  ^ c  ( 1  /  k ) ) ) ) )
147 df-3an 938 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( A  ^ c 
( 1  /  k
) ) )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  ( A  ^ c  ( 1  / 
k ) ) ) )
148146, 147syl6bb 253 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( A  ^ c 
( 1  /  k
) )  e.  RR )  ->  ( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  <->  ( ( p  e.  RR  /\  0  <_  p )  /\  p  <_  ( A  ^ c 
( 1  /  k
) ) ) ) )
149148baibd 876 . . . . . . . . . . . . 13  |-  ( ( ( 0  e.  RR  /\  ( A  ^ c 
( 1  /  k
) )  e.  RR )  /\  ( p  e.  RR  /\  0  <_  p ) )  -> 
( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  <->  p  <_  ( A  ^ c  ( 1  /  k ) ) ) )
15094, 145, 97, 99, 149syl22anc 1185 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( 0 [,] ( A  ^ c  ( 1  / 
k ) ) )  <-> 
p  <_  ( A  ^ c  ( 1  /  k ) ) ) )
151142, 150bitr3d 247 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  /\  p  e. 
Prime )  <->  p  <_  ( A  ^ c  ( 1  /  k ) ) ) )
15295, 143, 144cxpge0d 20607 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  0  <_  ( A  ^ c 
( 1  /  k
) ) )
153113nnrpd 10639 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  RR+ )
15497, 99, 145, 152, 153cxple2d 20610 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  <_  ( A  ^ c  ( 1  /  k ) )  <-> 
( p  ^ c 
k )  <_  (
( A  ^ c 
( 1  /  k
) )  ^ c 
k ) ) )
15596nncnd 10008 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  e.  CC )
156 cxpexp 20551 . . . . . . . . . . . . 13  |-  ( ( p  e.  CC  /\  k  e.  NN0 )  -> 
( p  ^ c 
k )  =  ( p ^ k ) )
157155, 117, 156syl2anc 643 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  ^ c  k )  =  ( p ^ k ) )
158113nncnd 10008 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  e.  CC )
159113nnne0d 10036 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  =/=  0 )
160158, 159recid2d 9778 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( 1  /  k
)  x.  k )  =  1 )
161160oveq2d 6089 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^ c  ( ( 1  /  k )  x.  k ) )  =  ( A  ^ c  1 ) )
162107, 144, 158cxpmuld 20617 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^ c  ( ( 1  /  k )  x.  k ) )  =  ( ( A  ^ c  ( 1  /  k ) )  ^ c  k ) )
16395recnd 9106 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  A  e.  CC )
164163cxp1d 20589 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  ( A  ^ c  1 )  =  A )
165161, 162, 1643eqtr3d 2475 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( A  ^ c 
( 1  /  k
) )  ^ c 
k )  =  A )
166157, 165breq12d 4217 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  ^ c 
k )  <_  (
( A  ^ c 
( 1  /  k
) )  ^ c 
k )  <->  ( p ^ k )  <_  A ) )
167151, 154, 1663bitrd 271 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  /\  p  e. 
Prime )  <->  ( p ^
k )  <_  A
) )
168141, 167syl5bb 249 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )  <->  ( p ^ k )  <_  A ) )
169140, 168anbi12d 692 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( k  e.  ( 1 ... ( |_
`  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
)  <->  ( k  <_  A  /\  ( p ^
k )  <_  A
) ) )
170118nnred 10007 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ k )  e.  RR )
171 bernneq3 11499 . . . . . . . . . . . 12  |-  ( ( p  e.  ( ZZ>= ` 
2 )  /\  k  e.  NN0 )  ->  k  <  ( p ^ k
) )
172109, 117, 171syl2anc 643 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  <  ( p ^ k
) )
173125, 170, 172ltled 9213 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  k  <_  ( p ^ k
) )
174 letr 9159 . . . . . . . . . . 11  |-  ( ( k  e.  RR  /\  ( p ^ k
)  e.  RR  /\  A  e.  RR )  ->  ( ( k  <_ 
( p ^ k
)  /\  ( p ^ k )  <_  A )  ->  k  <_  A ) )
175125, 170, 95, 174syl3anc 1184 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( k  <_  (
p ^ k )  /\  ( p ^
k )  <_  A
)  ->  k  <_  A ) )
176173, 175mpand 657 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  ->  k  <_  A ) )
177176pm4.71rd 617 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  ( k  <_  A  /\  ( p ^ k )  <_  A ) ) )
178155exp1d 11510 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ 1 )  =  p )
17996nnge1d 10034 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  1  <_  p )
18097, 179, 129leexp2ad 11547 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
p ^ 1 )  <_  ( p ^
k ) )
181178, 180eqbrtrrd 4226 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  p  <_  ( p ^ k
) )
182 letr 9159 . . . . . . . . . . 11  |-  ( ( p  e.  RR  /\  ( p ^ k
)  e.  RR  /\  A  e.  RR )  ->  ( ( p  <_ 
( p ^ k
)  /\  ( p ^ k )  <_  A )  ->  p  <_  A ) )
18397, 170, 95, 182syl3anc 1184 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  <_  (
p ^ k )  /\  ( p ^
k )  <_  A
)  ->  p  <_  A ) )
184181, 183mpand 657 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  ->  p  <_  A ) )
185184pm4.71rd 617 . . . . . . . 8  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p ^ k
)  <_  A  <->  ( p  <_  A  /\  ( p ^ k )  <_  A ) ) )
186169, 177, 1853bitr2rd 274 . . . . . . 7  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  <_  A  /\  ( p ^ k
)  <_  A )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( (
0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
) ) )
187134, 186bitrd 245 . . . . . 6  |-  ( ( A  e.  RR  /\  ( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
) )  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
) ) )
188187ex 424 . . . . 5  |-  ( A  e.  RR  ->  (
( ( p  e. 
Prime  /\  k  e.  NN )  /\  0  <  A
)  ->  ( (
p  e.  ( ( 0 [,] A )  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
) ) ) )
18983, 90, 188pm5.21ndd 344 . . . 4  |-  ( A  e.  RR  ->  (
( p  e.  ( ( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) )  <->  ( k  e.  ( 1 ... ( |_ `  A ) )  /\  p  e.  ( ( 0 [,] ( A  ^ c  ( 1  /  k ) ) )  i^i  Prime )
) ) )
1909adantrr 698 . . . 4  |-  ( ( A  e.  RR  /\  ( p  e.  (
( 0 [,] A
)  i^i  Prime )  /\  k  e.  ( 1 ... ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) ) ) )  -> 
( log `  p
)  e.  CC )
19168, 69, 1, 189, 190fsumcom2 12550 . . 3  |-  ( A  e.  RR  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) ) sum_ p  e.  ( ( 0 [,] ( A  ^ c  ( 1  / 
k ) ) )  i^i  Prime ) ( log `  p ) )
19267, 191eqtr4d 2470 . 2  |-  ( A  e.  RR  ->  sum_ k  e.  ( 1 ... ( |_ `  A ) ) ( theta `  ( A  ^ c  ( 1  /  k ) ) )  =  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime )
sum_ k  e.  ( 1 ... ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) ( log `  p ) )
19343, 44, 1923eqtr4d 2477 1  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ k  e.  ( 1 ... ( |_ `  A ) ) (
theta `  ( A  ^ c  ( 1  / 
k ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    i^i cin 3311    C_ wss 3312   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   Fincfn 7101   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    x. cmul 8987    < clt 9112    <_ cle 9113    / cdiv 9669   NNcn 9992   2c2 10041   NN0cn0 10213   ZZcz 10274   ZZ>=cuz 10480   RR+crp 10604   [,]cicc 10911   ...cfz 11035   |_cfl 11193   ^cexp 11374   #chash 11610   sum_csu 12471   Primecprime 13071   logclog 20444    ^ c ccxp 20445   thetaccht 20865  ψcchp 20867
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ioc 10913  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-sum 12472  df-ef 12662  df-sin 12664  df-cos 12665  df-pi 12667  df-dvds 12845  df-gcd 12999  df-prm 13072  df-pc 13203  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-haus 17371  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-limc 19745  df-dv 19746  df-log 20446  df-cxp 20447  df-cht 20871  df-vma 20872  df-chp 20873
  Copyright terms: Public domain W3C validator