MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpo1ubb Structured version   Unicode version

Theorem chpo1ubb 21168
Description: The ψ function is upper bounded by a linear term. (Contributed by Mario Carneiro, 31-May-2016.)
Assertion
Ref Expression
chpo1ubb  |-  E. c  e.  RR+  A. x  e.  RR+  (ψ `  x )  <_  ( c  x.  x
)
Distinct variable group:    x, c

Proof of Theorem chpo1ubb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 rpssre 10615 . . . . 5  |-  RR+  C_  RR
21a1i 11 . . . 4  |-  (  T. 
->  RR+  C_  RR )
3 1re 9083 . . . . 5  |-  1  e.  RR
43a1i 11 . . . 4  |-  (  T. 
->  1  e.  RR )
5 simpr 448 . . . . . . 7  |-  ( (  T.  /\  x  e.  RR+ )  ->  x  e.  RR+ )
65rpred 10641 . . . . . 6  |-  ( (  T.  /\  x  e.  RR+ )  ->  x  e.  RR )
7 chpcl 20900 . . . . . 6  |-  ( x  e.  RR  ->  (ψ `  x )  e.  RR )
86, 7syl 16 . . . . 5  |-  ( (  T.  /\  x  e.  RR+ )  ->  (ψ `  x )  e.  RR )
98, 5rerpdivcld 10668 . . . 4  |-  ( (  T.  /\  x  e.  RR+ )  ->  ( (ψ `  x )  /  x
)  e.  RR )
10 chpo1ub 21167 . . . . . 6  |-  ( x  e.  RR+  |->  ( (ψ `  x )  /  x
) )  e.  O
( 1 )
1110a1i 11 . . . . 5  |-  (  T. 
->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  e.  O ( 1 ) )
129, 11o1lo1d 12326 . . . 4  |-  (  T. 
->  ( x  e.  RR+  |->  ( (ψ `  x )  /  x ) )  e. 
<_ O ( 1 ) )
13 chpcl 20900 . . . . . 6  |-  ( y  e.  RR  ->  (ψ `  y )  e.  RR )
1413ad2antrl 709 . . . . 5  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
(ψ `  y )  e.  RR )
1514rehalfcld 10207 . . . 4  |-  ( (  T.  /\  ( y  e.  RR  /\  1  <_  y ) )  -> 
( (ψ `  y
)  /  2 )  e.  RR )
166adantr 452 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR )
17 chpeq0 20985 . . . . . . . . 9  |-  ( x  e.  RR  ->  (
(ψ `  x )  =  0  <->  x  <  2 ) )
1816, 17syl 16 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  x )  =  0  <-> 
x  <  2 ) )
1918biimpar 472 . . . . . . 7  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  x  <  2 )  -> 
(ψ `  x )  =  0 )
2019oveq1d 6089 . . . . . 6  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  x  <  2 )  -> 
( (ψ `  x
)  /  x )  =  ( 0  /  x ) )
215adantr 452 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  RR+ )
2221rpcnd 10643 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  e.  CC )
2321rpne0d 10646 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  =/=  0 )
2422, 23div0d 9782 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 0  /  x )  =  0 )
2514ad2ant2r 728 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  (ψ `  y
)  e.  RR )
26 2rp 10610 . . . . . . . . . 10  |-  2  e.  RR+
2726a1i 11 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  2  e.  RR+ )
28 simprll 739 . . . . . . . . . 10  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  y  e.  RR )
29 chpge0 20902 . . . . . . . . . 10  |-  ( y  e.  RR  ->  0  <_  (ψ `  y )
)
3028, 29syl 16 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  (ψ `  y ) )
3125, 27, 30divge0d 10677 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  0  <_  ( (ψ `  y )  /  2 ) )
3224, 31eqbrtrd 4225 . . . . . . 7  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( 0  /  x )  <_ 
( (ψ `  y
)  /  2 ) )
3332adantr 452 . . . . . 6  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  x  <  2 )  -> 
( 0  /  x
)  <_  ( (ψ `  y )  /  2
) )
3420, 33eqbrtrd 4225 . . . . 5  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  x  <  2 )  -> 
( (ψ `  x
)  /  x )  <_  ( (ψ `  y )  /  2
) )
358ad2antrr 707 . . . . . 6  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
(ψ `  x )  e.  RR )
3625adantr 452 . . . . . 6  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
(ψ `  y )  e.  RR )
3726a1i 11 . . . . . 6  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
2  e.  RR+ )
3816adantr 452 . . . . . 6  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  ->  x  e.  RR )
39 chpge0 20902 . . . . . . 7  |-  ( x  e.  RR  ->  0  <_  (ψ `  x )
)
4038, 39syl 16 . . . . . 6  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
0  <_  (ψ `  x
) )
4128adantr 452 . . . . . . 7  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
y  e.  RR )
42 simprr 734 . . . . . . . . 9  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <  y )
4316, 28, 42ltled 9214 . . . . . . . 8  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  x  <_  y )
4443adantr 452 . . . . . . 7  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  ->  x  <_  y )
45 chpwordi 20933 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR  /\  x  <_  y )  ->  (ψ `  x )  <_  (ψ `  y ) )
4638, 41, 44, 45syl3anc 1184 . . . . . 6  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
(ψ `  x )  <_  (ψ `  y )
)
47 simpr 448 . . . . . 6  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
2  <_  x )
4835, 36, 37, 38, 40, 46, 47lediv12ad 10696 . . . . 5  |-  ( ( ( (  T.  /\  x  e.  RR+ )  /\  ( ( y  e.  RR  /\  1  <_ 
y )  /\  x  <  y ) )  /\  2  <_  x )  -> 
( (ψ `  x
)  /  x )  <_  ( (ψ `  y )  /  2
) )
49 2re 10062 . . . . . 6  |-  2  e.  RR
5049a1i 11 . . . . 5  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  2  e.  RR )
5134, 48, 16, 50ltlecasei 9174 . . . 4  |-  ( ( (  T.  /\  x  e.  RR+ )  /\  (
( y  e.  RR  /\  1  <_  y )  /\  x  <  y ) )  ->  ( (ψ `  x )  /  x
)  <_  ( (ψ `  y )  /  2
) )
522, 4, 9, 12, 15, 51lo1bddrp 12312 . . 3  |-  (  T. 
->  E. c  e.  RR+  A. x  e.  RR+  (
(ψ `  x )  /  x )  <_  c
)
5352trud 1332 . 2  |-  E. c  e.  RR+  A. x  e.  RR+  ( (ψ `  x
)  /  x )  <_  c
54 simpr 448 . . . . . . 7  |-  ( ( c  e.  RR+  /\  x  e.  RR+ )  ->  x  e.  RR+ )
5554rpred 10641 . . . . . 6  |-  ( ( c  e.  RR+  /\  x  e.  RR+ )  ->  x  e.  RR )
5655, 7syl 16 . . . . 5  |-  ( ( c  e.  RR+  /\  x  e.  RR+ )  ->  (ψ `  x )  e.  RR )
57 simpl 444 . . . . . 6  |-  ( ( c  e.  RR+  /\  x  e.  RR+ )  ->  c  e.  RR+ )
5857rpred 10641 . . . . 5  |-  ( ( c  e.  RR+  /\  x  e.  RR+ )  ->  c  e.  RR )
5956, 58, 54ledivmul2d 10691 . . . 4  |-  ( ( c  e.  RR+  /\  x  e.  RR+ )  ->  (
( (ψ `  x
)  /  x )  <_  c  <->  (ψ `  x
)  <_  ( c  x.  x ) ) )
6059ralbidva 2714 . . 3  |-  ( c  e.  RR+  ->  ( A. x  e.  RR+  ( (ψ `  x )  /  x
)  <_  c  <->  A. x  e.  RR+  (ψ `  x
)  <_  ( c  x.  x ) ) )
6160rexbiia 2731 . 2  |-  ( E. c  e.  RR+  A. x  e.  RR+  ( (ψ `  x )  /  x
)  <_  c  <->  E. c  e.  RR+  A. x  e.  RR+  (ψ `  x )  <_  ( c  x.  x
) )
6253, 61mpbi 200 1  |-  E. c  e.  RR+  A. x  e.  RR+  (ψ `  x )  <_  ( c  x.  x
)
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359    T. wtru 1325    = wceq 1652    e. wcel 1725   A.wral 2698   E.wrex 2699    C_ wss 3313   class class class wbr 4205    e. cmpt 4259   ` cfv 5447  (class class class)co 6074   RRcr 8982   0cc0 8983   1c1 8984    x. cmul 8988    < clt 9113    <_ cle 9114    / cdiv 9670   2c2 10042   RR+crp 10605   O (
1 )co1 12273  ψcchp 20868
This theorem is referenced by:  pntrlog2bndlem3  21266
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694  ax-inf2 7589  ax-cnex 9039  ax-resscn 9040  ax-1cn 9041  ax-icn 9042  ax-addcl 9043  ax-addrcl 9044  ax-mulcl 9045  ax-mulrcl 9046  ax-mulcom 9047  ax-addass 9048  ax-mulass 9049  ax-distr 9050  ax-i2m1 9051  ax-1ne0 9052  ax-1rid 9053  ax-rnegex 9054  ax-rrecex 9055  ax-cnre 9056  ax-pre-lttri 9057  ax-pre-lttrn 9058  ax-pre-ltadd 9059  ax-pre-mulgt0 9060  ax-pre-sup 9061  ax-addf 9062  ax-mulf 9063
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2703  df-rex 2704  df-reu 2705  df-rmo 2706  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-pss 3329  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-tp 3815  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-iin 4089  df-br 4206  df-opab 4260  df-mpt 4261  df-tr 4296  df-eprel 4487  df-id 4491  df-po 4496  df-so 4497  df-fr 4534  df-se 4535  df-we 4536  df-ord 4577  df-on 4578  df-lim 4579  df-suc 4580  df-om 4839  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-isom 5456  df-ov 6077  df-oprab 6078  df-mpt2 6079  df-of 6298  df-1st 6342  df-2nd 6343  df-riota 6542  df-recs 6626  df-rdg 6661  df-1o 6717  df-2o 6718  df-oadd 6721  df-er 6898  df-map 7013  df-pm 7014  df-ixp 7057  df-en 7103  df-dom 7104  df-sdom 7105  df-fin 7106  df-fi 7409  df-sup 7439  df-oi 7472  df-card 7819  df-cda 8041  df-pnf 9115  df-mnf 9116  df-xr 9117  df-ltxr 9118  df-le 9119  df-sub 9286  df-neg 9287  df-div 9671  df-nn 9994  df-2 10051  df-3 10052  df-4 10053  df-5 10054  df-6 10055  df-7 10056  df-8 10057  df-9 10058  df-10 10059  df-n0 10215  df-z 10276  df-dec 10376  df-uz 10482  df-q 10568  df-rp 10606  df-xneg 10703  df-xadd 10704  df-xmul 10705  df-ioo 10913  df-ioc 10914  df-ico 10915  df-icc 10916  df-fz 11037  df-fzo 11129  df-fl 11195  df-mod 11244  df-seq 11317  df-exp 11376  df-fac 11560  df-bc 11587  df-hash 11612  df-shft 11875  df-cj 11897  df-re 11898  df-im 11899  df-sqr 12033  df-abs 12034  df-limsup 12258  df-clim 12275  df-rlim 12276  df-o1 12277  df-lo1 12278  df-sum 12473  df-ef 12663  df-e 12664  df-sin 12665  df-cos 12666  df-pi 12668  df-dvds 12846  df-gcd 13000  df-prm 13073  df-pc 13204  df-struct 13464  df-ndx 13465  df-slot 13466  df-base 13467  df-sets 13468  df-ress 13469  df-plusg 13535  df-mulr 13536  df-starv 13537  df-sca 13538  df-vsca 13539  df-tset 13541  df-ple 13542  df-ds 13544  df-unif 13545  df-hom 13546  df-cco 13547  df-rest 13643  df-topn 13644  df-topgen 13660  df-pt 13661  df-prds 13664  df-xrs 13719  df-0g 13720  df-gsum 13721  df-qtop 13726  df-imas 13727  df-xps 13729  df-mre 13804  df-mrc 13805  df-acs 13807  df-mnd 14683  df-submnd 14732  df-mulg 14808  df-cntz 15109  df-cmn 15407  df-psmet 16687  df-xmet 16688  df-met 16689  df-bl 16690  df-mopn 16691  df-fbas 16692  df-fg 16693  df-cnfld 16697  df-top 16956  df-bases 16958  df-topon 16959  df-topsp 16960  df-cld 17076  df-ntr 17077  df-cls 17078  df-nei 17155  df-lp 17193  df-perf 17194  df-cn 17284  df-cnp 17285  df-haus 17372  df-tx 17587  df-hmeo 17780  df-fil 17871  df-fm 17963  df-flim 17964  df-flf 17965  df-xms 18343  df-ms 18344  df-tms 18345  df-cncf 18901  df-limc 19746  df-dv 19747  df-log 20447  df-cxp 20448  df-cht 20872  df-vma 20873  df-chp 20874  df-ppi 20875
  Copyright terms: Public domain W3C validator