MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpub Unicode version

Theorem chpub 20475
Description: An upper bound on the second Chebyshev function. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpub  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
(ψ `  A )  <_  ( ( theta `  A
)  +  ( ( sqr `  A )  x.  ( log `  A
) ) ) )

Proof of Theorem chpub
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 chpcl 20378 . . . . 5  |-  ( A  e.  RR  ->  (ψ `  A )  e.  RR )
21adantr 451 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
(ψ `  A )  e.  RR )
3 chtcl 20363 . . . . 5  |-  ( A  e.  RR  ->  ( theta `  A )  e.  RR )
43adantr 451 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( theta `  A )  e.  RR )
52, 4resubcld 9227 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  e.  RR )
6 simpl 443 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  e.  RR )
7 0re 8854 . . . . . . . . . 10  |-  0  e.  RR
87a1i 10 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  e.  RR )
9 1re 8853 . . . . . . . . . 10  |-  1  e.  RR
109a1i 10 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
1  e.  RR )
11 0lt1 9312 . . . . . . . . . 10  |-  0  <  1
1211a1i 10 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <  1 )
13 simpr 447 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
1  <_  A )
148, 10, 6, 12, 13ltletrd 8992 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <  A )
156, 14elrpd 10404 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  e.  RR+ )
1615rpge0d 10410 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <_  A )
176, 16resqrcld 11916 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( sqr `  A
)  e.  RR )
18 ppifi 20359 . . . . 5  |-  ( ( sqr `  A )  e.  RR  ->  (
( 0 [,] ( sqr `  A ) )  i^i  Prime )  e.  Fin )
1917, 18syl 15 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  e.  Fin )
2015adantr 451 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  A  e.  RR+ )
2120relogcld 19990 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( log `  A
)  e.  RR )
2219, 21fsumrecl 12223 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
)  e.  RR )
2315relogcld 19990 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( log `  A
)  e.  RR )
2417, 23remulcld 8879 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
)  x.  ( log `  A ) )  e.  RR )
25 ppifi 20359 . . . . . . 7  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
2625adantr 451 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] A )  i^i  Prime )  e.  Fin )
27 inss2 3403 . . . . . . . . . . . 12  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
28 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  ( ( 0 [,] A
)  i^i  Prime ) )
2927, 28sseldi 3191 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  Prime )
30 prmnn 12777 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  NN )
3129, 30syl 15 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  NN )
3231nnrpd 10405 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  RR+ )
3332relogcld 19990 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( log `  p
)  e.  RR )
3423adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( log `  A
)  e.  RR )
3531nnred 9777 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  RR )
36 prmuz2 12792 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
3729, 36syl 15 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  (
ZZ>= `  2 ) )
38 eluz2b2 10306 . . . . . . . . . . . . 13  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
3938simprbi 450 . . . . . . . . . . . 12  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
4037, 39syl 15 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  1  <  p
)
4135, 40rplogcld 19996 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( log `  p
)  e.  RR+ )
4234, 41rerpdivcld 10433 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( log `  A )  /  ( log `  p ) )  e.  RR )
43 reflcl 10944 . . . . . . . . 9  |-  ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  RR )
4442, 43syl 15 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  RR )
4533, 44remulcld 8879 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  RR )
4645recnd 8877 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  CC )
4733recnd 8877 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( log `  p
)  e.  CC )
4826, 46, 47fsumsub 12266 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  =  ( sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( log `  p
) ) )
49 0le0 9843 . . . . . . . . 9  |-  0  <_  0
5049a1i 10 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <_  0 )
5110, 6, 6, 16, 13lemul2ad 9713 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( A  x.  1 )  <_  ( A  x.  A ) )
526recnd 8877 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  e.  CC )
5352sqsqrd 11937 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  =  A )
5452mulid1d 8868 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( A  x.  1 )  =  A )
5553, 54eqtr4d 2331 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  =  ( A  x.  1 ) )
5652sqvald 11258 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( A ^ 2 )  =  ( A  x.  A ) )
5751, 55, 563brtr4d 4069 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  <_  ( A ^
2 ) )
586, 16sqrge0d 11919 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <_  ( sqr `  A ) )
5917, 6, 58, 16le2sqd 11296 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
)  <_  A  <->  ( ( sqr `  A ) ^
2 )  <_  ( A ^ 2 ) ) )
6057, 59mpbird 223 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( sqr `  A
)  <_  A )
61 iccss 10734 . . . . . . . 8  |-  ( ( ( 0  e.  RR  /\  A  e.  RR )  /\  ( 0  <_ 
0  /\  ( sqr `  A )  <_  A
) )  ->  (
0 [,] ( sqr `  A ) )  C_  ( 0 [,] A
) )
628, 6, 50, 60, 61syl22anc 1183 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 0 [,] ( sqr `  A ) ) 
C_  ( 0 [,] A ) )
63 ssrin 3407 . . . . . . 7  |-  ( ( 0 [,] ( sqr `  A ) )  C_  ( 0 [,] A
)  ->  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime )  C_  ( ( 0 [,] A )  i^i  Prime ) )
6462, 63syl 15 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) 
C_  ( ( 0 [,] A )  i^i 
Prime ) )
6564sselda 3193 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
6645, 33resubcld 9227 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  -  ( log `  p ) )  e.  RR )
6766recnd 8877 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  -  ( log `  p ) )  e.  CC )
6865, 67syldan 456 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  e.  CC )
69 eldifi 3311 . . . . . . . . . . . . . . 15  |-  ( p  e.  ( ( ( 0 [,] A )  i^i  Prime )  \  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
7069, 47sylan2 460 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  p )  e.  CC )
7170mulid2d 8869 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
1  x.  ( log `  p ) )  =  ( log `  p
) )
72 inss1 3402 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0 [,] A )  i^i  Prime )  C_  (
0 [,] A )
7372, 28sseldi 3191 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  ( 0 [,] A ) )
746adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  A  e.  RR )
75 elicc2 10731 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
767, 74, 75sylancr 644 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( p  e.  ( 0 [,] A
)  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  A
) ) )
7773, 76mpbid 201 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  A
) )
7877simp3d 969 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  <_  A
)
7969, 78sylan2 460 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  <_  A )
8069, 32sylan2 460 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  e.  RR+ )
8115adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  A  e.  RR+ )
8280, 81logled 19994 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p  <_  A  <->  ( log `  p )  <_  ( log `  A ) ) )
8379, 82mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  p )  <_ 
( log `  A
) )
8471, 83eqbrtrd 4059 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
1  x.  ( log `  p ) )  <_ 
( log `  A
) )
859a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  1  e.  RR )
8623adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  A )  e.  RR )
8769, 41sylan2 460 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  p )  e.  RR+ )
8885, 86, 87lemuldivd 10451 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( 1  x.  ( log `  p ) )  <_  ( log `  A
)  <->  1  <_  (
( log `  A
)  /  ( log `  p ) ) ) )
8984, 88mpbid 201 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  1  <_  ( ( log `  A
)  /  ( log `  p ) ) )
906adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  A  e.  RR )
9190recnd 8877 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  A  e.  CC )
9291sqsqrd 11937 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( sqr `  A
) ^ 2 )  =  A )
93 eldifn 3312 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  e.  ( ( ( 0 [,] A )  i^i  Prime )  \  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  -.  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )
9493adantl 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  -.  p  e.  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime ) )
9569, 29sylan2 460 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  e.  Prime )
96 elin 3371 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  e.  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  <-> 
( p  e.  ( 0 [,] ( sqr `  A ) )  /\  p  e.  Prime ) )
9796rbaib 873 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  Prime  ->  ( p  e.  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  <-> 
p  e.  ( 0 [,] ( sqr `  A
) ) ) )
9895, 97syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime )  <->  p  e.  (
0 [,] ( sqr `  A ) ) ) )
997a1i 10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  0  e.  RR )
10017adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( sqr `  A )  e.  RR )
10169, 31sylan2 460 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  e.  NN )
102101nnred 9777 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  e.  RR )
10380rpge0d 10410 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  0  <_  p )
104 elicc2 10731 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 0  e.  RR  /\  ( sqr `  A )  e.  RR )  -> 
( p  e.  ( 0 [,] ( sqr `  A ) )  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( sqr `  A ) ) ) )
105 df-3an 936 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( sqr `  A
) )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  ( sqr `  A
) ) )
106104, 105syl6bb 252 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 0  e.  RR  /\  ( sqr `  A )  e.  RR )  -> 
( p  e.  ( 0 [,] ( sqr `  A ) )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  ( sqr `  A
) ) ) )
107106baibd 875 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 0  e.  RR  /\  ( sqr `  A
)  e.  RR )  /\  ( p  e.  RR  /\  0  <_  p ) )  -> 
( p  e.  ( 0 [,] ( sqr `  A ) )  <->  p  <_  ( sqr `  A ) ) )
10899, 100, 102, 103, 107syl22anc 1183 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p  e.  ( 0 [,] ( sqr `  A
) )  <->  p  <_  ( sqr `  A ) ) )
10998, 108bitrd 244 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime )  <->  p  <_  ( sqr `  A ) ) )
11094, 109mtbid 291 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  -.  p  <_  ( sqr `  A
) )
111100, 102ltnled 8982 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( sqr `  A
)  <  p  <->  -.  p  <_  ( sqr `  A
) ) )
112110, 111mpbird 223 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( sqr `  A )  < 
p )
11358adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  0  <_  ( sqr `  A
) )
114100, 102, 113, 103lt2sqd 11295 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( sqr `  A
)  <  p  <->  ( ( sqr `  A ) ^
2 )  <  (
p ^ 2 ) ) )
115112, 114mpbid 201 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( sqr `  A
) ^ 2 )  <  ( p ^
2 ) )
11692, 115eqbrtrrd 4061 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  A  <  ( p ^ 2 ) )
117101nnsqcld 11281 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p ^ 2 )  e.  NN )
118117nnrpd 10405 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p ^ 2 )  e.  RR+ )
119 logltb 19969 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR+  /\  (
p ^ 2 )  e.  RR+ )  ->  ( A  <  ( p ^
2 )  <->  ( log `  A )  <  ( log `  ( p ^
2 ) ) ) )
12081, 118, 119syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( A  <  ( p ^
2 )  <->  ( log `  A )  <  ( log `  ( p ^
2 ) ) ) )
121116, 120mpbid 201 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  A )  < 
( log `  (
p ^ 2 ) ) )
122 2z 10070 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
123 relogexp 19965 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  RR+  /\  2  e.  ZZ )  ->  ( log `  ( p ^
2 ) )  =  ( 2  x.  ( log `  p ) ) )
12480, 122, 123sylancl 643 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  ( p ^
2 ) )  =  ( 2  x.  ( log `  p ) ) )
125121, 124breqtrd 4063 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  A )  < 
( 2  x.  ( log `  p ) ) )
126 2re 9831 . . . . . . . . . . . . . . 15  |-  2  e.  RR
127126a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  2  e.  RR )
12886, 127, 87ltdivmul2d 10454 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( ( log `  A
)  /  ( log `  p ) )  <  2  <->  ( log `  A
)  <  ( 2  x.  ( log `  p
) ) ) )
129125, 128mpbird 223 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  A
)  /  ( log `  p ) )  <  2 )
130 df-2 9820 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
131129, 130syl6breq 4078 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  A
)  /  ( log `  p ) )  < 
( 1  +  1 ) )
13269, 42sylan2 460 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  A
)  /  ( log `  p ) )  e.  RR )
133 1z 10069 . . . . . . . . . . . 12  |-  1  e.  ZZ
134 flbi 10962 . . . . . . . . . . . 12  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  1  e.  ZZ )  ->  (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  =  1  <->  ( 1  <_  ( ( log `  A )  /  ( log `  p ) )  /\  ( ( log `  A )  /  ( log `  p ) )  <  ( 1  +  1 ) ) ) )
135132, 133, 134sylancl 643 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  =  1  <->  ( 1  <_  ( ( log `  A )  /  ( log `  p ) )  /\  ( ( log `  A )  /  ( log `  p ) )  <  ( 1  +  1 ) ) ) )
13689, 131, 135mpbir2and 888 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) )  =  1 )
137136oveq2d 5890 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( ( log `  p
)  x.  1 ) )
13870mulid1d 8868 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  p
)  x.  1 )  =  ( log `  p
) )
139137, 138eqtrd 2328 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( log `  p ) )
140139oveq1d 5889 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  =  ( ( log `  p )  -  ( log `  p ) ) )
14170subidd 9161 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  p
)  -  ( log `  p ) )  =  0 )
142140, 141eqtrd 2328 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  =  0 )
14364, 68, 142, 26fsumss 12214 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  -  ( log `  p ) )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) ( ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) ) )
144 chpval2 20473 . . . . . . 7  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
145144adantr 451 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
(ψ `  A )  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )
146 chtval 20364 . . . . . . 7  |-  ( A  e.  RR  ->  ( theta `  A )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) ( log `  p ) )
147146adantr 451 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( theta `  A )  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) ( log `  p ) )
148145, 147oveq12d 5892 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  =  ( sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( log `  p
) ) )
14948, 143, 1483eqtr4rd 2339 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  = 
sum_ p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) ( ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) ) )
15065, 66syldan 456 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  e.  RR )
15165, 45syldan 456 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  RR )
15265, 41syldan 456 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR+ )
153152rpge0d 10410 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
0  <_  ( log `  p ) )
154 inss2 3403 . . . . . . . . . . . 12  |-  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime )  C_  Prime
155 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime ) )
156154, 155sseldi 3191 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  Prime )
157156, 30syl 15 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  NN )
158157nnrpd 10405 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  RR+ )
159158relogcld 19990 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR )
160151, 159subge02d 9380 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( 0  <_  ( log `  p )  <->  ( (
( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  <_  ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ) )
161153, 160mpbid 201 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  <_  ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
16265, 42syldan 456 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR )
163 flle 10947 . . . . . . . 8  |-  ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  <_  ( ( log `  A )  /  ( log `  p ) ) )
164162, 163syl 15 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  <_  ( ( log `  A )  /  ( log `  p ) ) )
16565, 44syldan 456 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  RR )
166165, 21, 152lemuldiv2d 10452 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  <_  ( log `  A )  <->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  <_  ( ( log `  A )  /  ( log `  p ) ) ) )
167164, 166mpbird 223 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  <_  ( log `  A ) )
168150, 151, 21, 161, 167letrd 8989 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  <_  ( log `  A
) )
16919, 150, 21, 168fsumle 12273 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  -  ( log `  p ) )  <_  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
) )
170149, 169eqbrtrd 4059 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  <_  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
) )
17123recnd 8877 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( log `  A
)  e.  CC )
172 fsumconst 12268 . . . . 5  |-  ( ( ( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  e.  Fin  /\  ( log `  A )  e.  CC )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ( log `  A
)  =  ( (
# `  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime ) )  x.  ( log `  A ) ) )
17319, 171, 172syl2anc 642 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
)  =  ( (
# `  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime ) )  x.  ( log `  A ) ) )
174 hashcl 11366 . . . . . . 7  |-  ( ( ( 0 [,] ( sqr `  A ) )  i^i  Prime )  e.  Fin  ->  ( # `  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  e. 
NN0 )
17519, 174syl 15 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  e.  NN0 )
176175nn0red 10035 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  e.  RR )
177 logge0 19975 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <_  ( log `  A ) )
178 reflcl 10944 . . . . . . 7  |-  ( ( sqr `  A )  e.  RR  ->  ( |_ `  ( sqr `  A
) )  e.  RR )
17917, 178syl 15 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  ( sqr `  A ) )  e.  RR )
180 fzfid 11051 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1 ... ( |_ `  ( sqr `  A
) ) )  e. 
Fin )
181 ppisval 20357 . . . . . . . . . . 11  |-  ( ( sqr `  A )  e.  RR  ->  (
( 0 [,] ( sqr `  A ) )  i^i  Prime )  =  ( ( 2 ... ( |_ `  ( sqr `  A
) ) )  i^i 
Prime ) )
18217, 181syl 15 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  =  ( ( 2 ... ( |_ `  ( sqr `  A ) ) )  i^i  Prime ) )
183 inss1 3402 . . . . . . . . . . 11  |-  ( ( 2 ... ( |_
`  ( sqr `  A
) ) )  i^i 
Prime )  C_  ( 2 ... ( |_ `  ( sqr `  A ) ) )
184 2nn 9893 . . . . . . . . . . . . 13  |-  2  e.  NN
185 nnuz 10279 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
186184, 185eleqtri 2368 . . . . . . . . . . . 12  |-  2  e.  ( ZZ>= `  1 )
187 fzss1 10846 . . . . . . . . . . . 12  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( 2 ... ( |_ `  ( sqr `  A ) ) )  C_  (
1 ... ( |_ `  ( sqr `  A ) ) ) )
188186, 187mp1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 2 ... ( |_ `  ( sqr `  A
) ) )  C_  ( 1 ... ( |_ `  ( sqr `  A
) ) ) )
189183, 188syl5ss 3203 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 2 ... ( |_ `  ( sqr `  A ) ) )  i^i  Prime )  C_  ( 1 ... ( |_ `  ( sqr `  A
) ) ) )
190182, 189eqsstrd 3225 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) 
C_  ( 1 ... ( |_ `  ( sqr `  A ) ) ) )
191 ssdomg 6923 . . . . . . . . 9  |-  ( ( 1 ... ( |_
`  ( sqr `  A
) ) )  e. 
Fin  ->  ( ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime )  C_  ( 1 ... ( |_ `  ( sqr `  A ) ) )  ->  (
( 0 [,] ( sqr `  A ) )  i^i  Prime )  ~<_  ( 1 ... ( |_ `  ( sqr `  A ) ) ) ) )
192180, 190, 191sylc 56 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  ~<_  ( 1 ... ( |_ `  ( sqr `  A
) ) ) )
193 hashdom 11377 . . . . . . . . 9  |-  ( ( ( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  e.  Fin  /\  (
1 ... ( |_ `  ( sqr `  A ) ) )  e.  Fin )  ->  ( ( # `  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) )  <_  ( # `  (
1 ... ( |_ `  ( sqr `  A ) ) ) )  <->  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime )  ~<_  ( 1 ... ( |_ `  ( sqr `  A ) ) ) ) )
19419, 180, 193syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( # `  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  <_ 
( # `  ( 1 ... ( |_ `  ( sqr `  A ) ) ) )  <->  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime )  ~<_  ( 1 ... ( |_ `  ( sqr `  A ) ) ) ) )
195192, 194mpbird 223 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  <_  ( # `
 ( 1 ... ( |_ `  ( sqr `  A ) ) ) ) )
196 flge0nn0 10964 . . . . . . . . 9  |-  ( ( ( sqr `  A
)  e.  RR  /\  0  <_  ( sqr `  A
) )  ->  ( |_ `  ( sqr `  A
) )  e.  NN0 )
19717, 58, 196syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  ( sqr `  A ) )  e.  NN0 )
198 hashfz1 11361 . . . . . . . 8  |-  ( ( |_ `  ( sqr `  A ) )  e. 
NN0  ->  ( # `  (
1 ... ( |_ `  ( sqr `  A ) ) ) )  =  ( |_ `  ( sqr `  A ) ) )
199197, 198syl 15 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( 1 ... ( |_ `  ( sqr `  A ) ) ) )  =  ( |_ `  ( sqr `  A ) ) )
200195, 199breqtrd 4063 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  <_  ( |_ `  ( sqr `  A
) ) )
201 flle 10947 . . . . . . 7  |-  ( ( sqr `  A )  e.  RR  ->  ( |_ `  ( sqr `  A
) )  <_  ( sqr `  A ) )
20217, 201syl 15 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  ( sqr `  A ) )  <_  ( sqr `  A
) )
203176, 179, 17, 200, 202letrd 8989 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  <_  ( sqr `  A ) )
204176, 17, 23, 177, 203lemul1ad 9712 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( # `  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  x.  ( log `  A
) )  <_  (
( sqr `  A
)  x.  ( log `  A ) ) )
205173, 204eqbrtrd 4059 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
)  <_  ( ( sqr `  A )  x.  ( log `  A
) ) )
2065, 22, 24, 170, 205letrd 8989 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  <_ 
( ( sqr `  A
)  x.  ( log `  A ) ) )
2072, 4, 24lesubadd2d 9387 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( (ψ `  A )  -  ( theta `  A ) )  <_  ( ( sqr `  A )  x.  ( log `  A ) )  <-> 
(ψ `  A )  <_  ( ( theta `  A
)  +  ( ( sqr `  A )  x.  ( log `  A
) ) ) ) )
208206, 207mpbid 201 1  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
(ψ `  A )  <_  ( ( theta `  A
)  +  ( ( sqr `  A )  x.  ( log `  A
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696    \ cdif 3162    i^i cin 3164    C_ wss 3165   class class class wbr 4039   ` cfv 5271  (class class class)co 5874    ~<_ cdom 6877   Fincfn 6879   CCcc 8751   RRcr 8752   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758    < clt 8883    <_ cle 8884    - cmin 9053    / cdiv 9439   NNcn 9762   2c2 9811   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   [,]cicc 10675   ...cfz 10798   |_cfl 10940   ^cexp 11120   #chash 11353   sqrcsqr 11734   sum_csu 12174   Primecprime 12774   logclog 19928   thetaccht 20344  ψcchp 20346
This theorem is referenced by:  chpchtlim  20644
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-iin 3924  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-2o 6496  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-ixp 6834  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-fi 7181  df-sup 7210  df-oi 7241  df-card 7588  df-cda 7810  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ioo 10676  df-ioc 10677  df-ico 10678  df-icc 10679  df-fz 10799  df-fzo 10887  df-fl 10941  df-mod 10990  df-seq 11063  df-exp 11121  df-fac 11305  df-bc 11332  df-hash 11354  df-shft 11578  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-limsup 11961  df-clim 11978  df-rlim 11979  df-sum 12175  df-ef 12365  df-sin 12367  df-cos 12368  df-pi 12370  df-dvds 12548  df-gcd 12702  df-prm 12775  df-pc 12906  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-sca 13240  df-vsca 13241  df-tset 13243  df-ple 13244  df-ds 13246  df-hom 13248  df-cco 13249  df-rest 13343  df-topn 13344  df-topgen 13360  df-pt 13361  df-prds 13364  df-xrs 13419  df-0g 13420  df-gsum 13421  df-qtop 13426  df-imas 13427  df-xps 13429  df-mre 13504  df-mrc 13505  df-acs 13507  df-mnd 14383  df-submnd 14432  df-mulg 14508  df-cntz 14809  df-cmn 15107  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-cnfld 16394  df-top 16652  df-bases 16654  df-topon 16655  df-topsp 16656  df-cld 16772  df-ntr 16773  df-cls 16774  df-nei 16851  df-lp 16884  df-perf 16885  df-cn 16973  df-cnp 16974  df-haus 17059  df-tx 17273  df-hmeo 17462  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-xms 17901  df-ms 17902  df-tms 17903  df-cncf 18398  df-limc 19232  df-dv 19233  df-log 19930  df-cht 20350  df-vma 20351  df-chp 20352
  Copyright terms: Public domain W3C validator