MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chpub Unicode version

Theorem chpub 20459
Description: An upper bound on the second Chebyshev function. (Contributed by Mario Carneiro, 8-Apr-2016.)
Assertion
Ref Expression
chpub  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
(ψ `  A )  <_  ( ( theta `  A
)  +  ( ( sqr `  A )  x.  ( log `  A
) ) ) )

Proof of Theorem chpub
Dummy variable  p is distinct from all other variables.
StepHypRef Expression
1 chpcl 20362 . . . . 5  |-  ( A  e.  RR  ->  (ψ `  A )  e.  RR )
21adantr 451 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
(ψ `  A )  e.  RR )
3 chtcl 20347 . . . . 5  |-  ( A  e.  RR  ->  ( theta `  A )  e.  RR )
43adantr 451 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( theta `  A )  e.  RR )
52, 4resubcld 9211 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  e.  RR )
6 simpl 443 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  e.  RR )
7 0re 8838 . . . . . . . . . 10  |-  0  e.  RR
87a1i 10 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  e.  RR )
9 1re 8837 . . . . . . . . . 10  |-  1  e.  RR
109a1i 10 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
1  e.  RR )
11 0lt1 9296 . . . . . . . . . 10  |-  0  <  1
1211a1i 10 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <  1 )
13 simpr 447 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
1  <_  A )
148, 10, 6, 12, 13ltletrd 8976 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <  A )
156, 14elrpd 10388 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  e.  RR+ )
1615rpge0d 10394 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <_  A )
176, 16resqrcld 11900 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( sqr `  A
)  e.  RR )
18 ppifi 20343 . . . . 5  |-  ( ( sqr `  A )  e.  RR  ->  (
( 0 [,] ( sqr `  A ) )  i^i  Prime )  e.  Fin )
1917, 18syl 15 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  e.  Fin )
2015adantr 451 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  A  e.  RR+ )
2120relogcld 19974 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( log `  A
)  e.  RR )
2219, 21fsumrecl 12207 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
)  e.  RR )
2315relogcld 19974 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( log `  A
)  e.  RR )
2417, 23remulcld 8863 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
)  x.  ( log `  A ) )  e.  RR )
25 ppifi 20343 . . . . . . 7  |-  ( A  e.  RR  ->  (
( 0 [,] A
)  i^i  Prime )  e. 
Fin )
2625adantr 451 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] A )  i^i  Prime )  e.  Fin )
27 inss2 3390 . . . . . . . . . . . 12  |-  ( ( 0 [,] A )  i^i  Prime )  C_  Prime
28 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  ( ( 0 [,] A
)  i^i  Prime ) )
2927, 28sseldi 3178 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  Prime )
30 prmnn 12761 . . . . . . . . . . 11  |-  ( p  e.  Prime  ->  p  e.  NN )
3129, 30syl 15 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  NN )
3231nnrpd 10389 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  RR+ )
3332relogcld 19974 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( log `  p
)  e.  RR )
3423adantr 451 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( log `  A
)  e.  RR )
3531nnred 9761 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  RR )
36 prmuz2 12776 . . . . . . . . . . . . 13  |-  ( p  e.  Prime  ->  p  e.  ( ZZ>= `  2 )
)
3729, 36syl 15 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  (
ZZ>= `  2 ) )
38 eluz2b2 10290 . . . . . . . . . . . . 13  |-  ( p  e.  ( ZZ>= `  2
)  <->  ( p  e.  NN  /\  1  < 
p ) )
3938simprbi 450 . . . . . . . . . . . 12  |-  ( p  e.  ( ZZ>= `  2
)  ->  1  <  p )
4037, 39syl 15 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  1  <  p
)
4135, 40rplogcld 19980 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( log `  p
)  e.  RR+ )
4234, 41rerpdivcld 10417 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( log `  A )  /  ( log `  p ) )  e.  RR )
43 reflcl 10928 . . . . . . . . 9  |-  ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  RR )
4442, 43syl 15 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  e.  RR )
4533, 44remulcld 8863 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  RR )
4645recnd 8861 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  CC )
4733recnd 8861 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( log `  p
)  e.  CC )
4826, 46, 47fsumsub 12250 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  =  ( sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( log `  p
) ) )
49 0le0 9827 . . . . . . . . 9  |-  0  <_  0
5049a1i 10 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <_  0 )
5110, 6, 6, 16, 13lemul2ad 9697 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( A  x.  1 )  <_  ( A  x.  A ) )
526recnd 8861 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  A  e.  CC )
5352sqsqrd 11921 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  =  A )
5452mulid1d 8852 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( A  x.  1 )  =  A )
5553, 54eqtr4d 2318 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  =  ( A  x.  1 ) )
5652sqvald 11242 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( A ^ 2 )  =  ( A  x.  A ) )
5751, 55, 563brtr4d 4053 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
) ^ 2 )  <_  ( A ^
2 ) )
586, 16sqrge0d 11903 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <_  ( sqr `  A ) )
5917, 6, 58, 16le2sqd 11280 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( sqr `  A
)  <_  A  <->  ( ( sqr `  A ) ^
2 )  <_  ( A ^ 2 ) ) )
6057, 59mpbird 223 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( sqr `  A
)  <_  A )
61 iccss 10718 . . . . . . . 8  |-  ( ( ( 0  e.  RR  /\  A  e.  RR )  /\  ( 0  <_ 
0  /\  ( sqr `  A )  <_  A
) )  ->  (
0 [,] ( sqr `  A ) )  C_  ( 0 [,] A
) )
628, 6, 50, 60, 61syl22anc 1183 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 0 [,] ( sqr `  A ) ) 
C_  ( 0 [,] A ) )
63 ssrin 3394 . . . . . . 7  |-  ( ( 0 [,] ( sqr `  A ) )  C_  ( 0 [,] A
)  ->  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime )  C_  ( ( 0 [,] A )  i^i  Prime ) )
6462, 63syl 15 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) 
C_  ( ( 0 [,] A )  i^i 
Prime ) )
6564sselda 3180 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
6645, 33resubcld 9211 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  -  ( log `  p ) )  e.  RR )
6766recnd 8861 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  -  ( log `  p ) )  e.  CC )
6865, 67syldan 456 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  e.  CC )
69 eldifi 3298 . . . . . . . . . . . . . . 15  |-  ( p  e.  ( ( ( 0 [,] A )  i^i  Prime )  \  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] A )  i^i  Prime ) )
7069, 47sylan2 460 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  p )  e.  CC )
7170mulid2d 8853 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
1  x.  ( log `  p ) )  =  ( log `  p
) )
72 inss1 3389 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0 [,] A )  i^i  Prime )  C_  (
0 [,] A )
7372, 28sseldi 3178 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  e.  ( 0 [,] A ) )
746adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  A  e.  RR )
75 elicc2 10715 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  A  e.  RR )  ->  ( p  e.  ( 0 [,] A )  <-> 
( p  e.  RR  /\  0  <_  p  /\  p  <_  A ) ) )
767, 74, 75sylancr 644 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( p  e.  ( 0 [,] A
)  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  A
) ) )
7773, 76mpbid 201 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  A
) )
7877simp3d 969 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] A
)  i^i  Prime ) )  ->  p  <_  A
)
7969, 78sylan2 460 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  <_  A )
8069, 32sylan2 460 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  e.  RR+ )
8115adantr 451 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  A  e.  RR+ )
8280, 81logled 19978 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p  <_  A  <->  ( log `  p )  <_  ( log `  A ) ) )
8379, 82mpbid 201 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  p )  <_ 
( log `  A
) )
8471, 83eqbrtrd 4043 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
1  x.  ( log `  p ) )  <_ 
( log `  A
) )
859a1i 10 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  1  e.  RR )
8623adantr 451 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  A )  e.  RR )
8769, 41sylan2 460 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  p )  e.  RR+ )
8885, 86, 87lemuldivd 10435 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( 1  x.  ( log `  p ) )  <_  ( log `  A
)  <->  1  <_  (
( log `  A
)  /  ( log `  p ) ) ) )
8984, 88mpbid 201 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  1  <_  ( ( log `  A
)  /  ( log `  p ) ) )
906adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  A  e.  RR )
9190recnd 8861 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  A  e.  CC )
9291sqsqrd 11921 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( sqr `  A
) ^ 2 )  =  A )
93 eldifn 3299 . . . . . . . . . . . . . . . . . . . 20  |-  ( p  e.  ( ( ( 0 [,] A )  i^i  Prime )  \  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  -.  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )
9493adantl 452 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  -.  p  e.  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime ) )
9569, 29sylan2 460 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  e.  Prime )
96 elin 3358 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( p  e.  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  <-> 
( p  e.  ( 0 [,] ( sqr `  A ) )  /\  p  e.  Prime ) )
9796rbaib 873 . . . . . . . . . . . . . . . . . . . . 21  |-  ( p  e.  Prime  ->  ( p  e.  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  <-> 
p  e.  ( 0 [,] ( sqr `  A
) ) ) )
9895, 97syl 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime )  <->  p  e.  (
0 [,] ( sqr `  A ) ) ) )
997a1i 10 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  0  e.  RR )
10017adantr 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( sqr `  A )  e.  RR )
10169, 31sylan2 460 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  e.  NN )
102101nnred 9761 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  p  e.  RR )
10380rpge0d 10394 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  0  <_  p )
104 elicc2 10715 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 0  e.  RR  /\  ( sqr `  A )  e.  RR )  -> 
( p  e.  ( 0 [,] ( sqr `  A ) )  <->  ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( sqr `  A ) ) ) )
105 df-3an 936 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( p  e.  RR  /\  0  <_  p  /\  p  <_  ( sqr `  A
) )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  ( sqr `  A
) ) )
106104, 105syl6bb 252 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 0  e.  RR  /\  ( sqr `  A )  e.  RR )  -> 
( p  e.  ( 0 [,] ( sqr `  A ) )  <->  ( (
p  e.  RR  /\  0  <_  p )  /\  p  <_  ( sqr `  A
) ) ) )
107106baibd 875 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( 0  e.  RR  /\  ( sqr `  A
)  e.  RR )  /\  ( p  e.  RR  /\  0  <_  p ) )  -> 
( p  e.  ( 0 [,] ( sqr `  A ) )  <->  p  <_  ( sqr `  A ) ) )
10899, 100, 102, 103, 107syl22anc 1183 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p  e.  ( 0 [,] ( sqr `  A
) )  <->  p  <_  ( sqr `  A ) ) )
10998, 108bitrd 244 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime )  <->  p  <_  ( sqr `  A ) ) )
11094, 109mtbid 291 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  -.  p  <_  ( sqr `  A
) )
111100, 102ltnled 8966 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( sqr `  A
)  <  p  <->  -.  p  <_  ( sqr `  A
) ) )
112110, 111mpbird 223 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( sqr `  A )  < 
p )
11358adantr 451 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  0  <_  ( sqr `  A
) )
114100, 102, 113, 103lt2sqd 11279 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( sqr `  A
)  <  p  <->  ( ( sqr `  A ) ^
2 )  <  (
p ^ 2 ) ) )
115112, 114mpbid 201 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( sqr `  A
) ^ 2 )  <  ( p ^
2 ) )
11692, 115eqbrtrrd 4045 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  A  <  ( p ^ 2 ) )
117101nnsqcld 11265 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p ^ 2 )  e.  NN )
118117nnrpd 10389 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
p ^ 2 )  e.  RR+ )
119 logltb 19953 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR+  /\  (
p ^ 2 )  e.  RR+ )  ->  ( A  <  ( p ^
2 )  <->  ( log `  A )  <  ( log `  ( p ^
2 ) ) ) )
12081, 118, 119syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( A  <  ( p ^
2 )  <->  ( log `  A )  <  ( log `  ( p ^
2 ) ) ) )
121116, 120mpbid 201 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  A )  < 
( log `  (
p ^ 2 ) ) )
122 2z 10054 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
123 relogexp 19949 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  RR+  /\  2  e.  ZZ )  ->  ( log `  ( p ^
2 ) )  =  ( 2  x.  ( log `  p ) ) )
12480, 122, 123sylancl 643 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  ( p ^
2 ) )  =  ( 2  x.  ( log `  p ) ) )
125121, 124breqtrd 4047 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( log `  A )  < 
( 2  x.  ( log `  p ) ) )
126 2re 9815 . . . . . . . . . . . . . . 15  |-  2  e.  RR
127126a1i 10 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  2  e.  RR )
12886, 127, 87ltdivmul2d 10438 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( ( log `  A
)  /  ( log `  p ) )  <  2  <->  ( log `  A
)  <  ( 2  x.  ( log `  p
) ) ) )
129125, 128mpbird 223 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  A
)  /  ( log `  p ) )  <  2 )
130 df-2 9804 . . . . . . . . . . . 12  |-  2  =  ( 1  +  1 )
131129, 130syl6breq 4062 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  A
)  /  ( log `  p ) )  < 
( 1  +  1 ) )
13269, 42sylan2 460 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  A
)  /  ( log `  p ) )  e.  RR )
133 1z 10053 . . . . . . . . . . . 12  |-  1  e.  ZZ
134 flbi 10946 . . . . . . . . . . . 12  |-  ( ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  /\  1  e.  ZZ )  ->  (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  =  1  <->  ( 1  <_  ( ( log `  A )  /  ( log `  p ) )  /\  ( ( log `  A )  /  ( log `  p ) )  <  ( 1  +  1 ) ) ) )
135132, 133, 134sylancl 643 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  =  1  <->  ( 1  <_  ( ( log `  A )  /  ( log `  p ) )  /\  ( ( log `  A )  /  ( log `  p ) )  <  ( 1  +  1 ) ) ) )
13689, 131, 135mpbir2and 888 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) )  =  1 )
137136oveq2d 5874 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( ( log `  p
)  x.  1 ) )
13870mulid1d 8852 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  p
)  x.  1 )  =  ( log `  p
) )
139137, 138eqtrd 2315 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  =  ( log `  p ) )
140139oveq1d 5873 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  =  ( ( log `  p )  -  ( log `  p ) ) )
14170subidd 9145 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( log `  p
)  -  ( log `  p ) )  =  0 )
142140, 141eqtrd 2315 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( ( 0 [,] A )  i^i  Prime ) 
\  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ) )  ->  (
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  =  0 )
14364, 68, 142, 26fsumss 12198 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  -  ( log `  p ) )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) ( ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) ) )
144 chpval2 20457 . . . . . . 7  |-  ( A  e.  RR  ->  (ψ `  A )  =  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
145144adantr 451 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
(ψ `  A )  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) ) )
146 chtval 20348 . . . . . . 7  |-  ( A  e.  RR  ->  ( theta `  A )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) ( log `  p ) )
147146adantr 451 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( theta `  A )  =  sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) ( log `  p ) )
148145, 147oveq12d 5876 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  =  ( sum_ p  e.  ( ( 0 [,] A
)  i^i  Prime ) ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  sum_ p  e.  ( ( 0 [,] A )  i^i 
Prime ) ( log `  p
) ) )
14948, 143, 1483eqtr4rd 2326 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  = 
sum_ p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) ( ( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) ) )
15065, 66syldan 456 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  e.  RR )
15165, 45syldan 456 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  e.  RR )
15265, 41syldan 456 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR+ )
153152rpge0d 10394 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
0  <_  ( log `  p ) )
154 inss2 3390 . . . . . . . . . . . 12  |-  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime )  C_  Prime
155 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime ) )
156154, 155sseldi 3178 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  Prime )
157156, 30syl 15 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  NN )
158157nnrpd 10389 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  ->  p  e.  RR+ )
159158relogcld 19974 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( log `  p
)  e.  RR )
160151, 159subge02d 9364 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( 0  <_  ( log `  p )  <->  ( (
( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  <_  ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) ) )
161153, 160mpbid 201 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  <_  ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) ) )
16265, 42syldan 456 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( log `  A
)  /  ( log `  p ) )  e.  RR )
163 flle 10931 . . . . . . . 8  |-  ( ( ( log `  A
)  /  ( log `  p ) )  e.  RR  ->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  <_  ( ( log `  A )  /  ( log `  p ) ) )
164162, 163syl 15 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  <_  ( ( log `  A )  /  ( log `  p ) ) )
16565, 44syldan 456 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( |_ `  (
( log `  A
)  /  ( log `  p ) ) )  e.  RR )
166165, 21, 152lemuldiv2d 10436 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  <_  ( log `  A )  <->  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) )  <_  ( ( log `  A )  /  ( log `  p ) ) ) )
167164, 166mpbird 223 . . . . . 6  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( log `  p
)  x.  ( |_
`  ( ( log `  A )  /  ( log `  p ) ) ) )  <_  ( log `  A ) )
168150, 151, 21, 161, 167letrd 8973 . . . . 5  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  p  e.  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  -> 
( ( ( log `  p )  x.  ( |_ `  ( ( log `  A )  /  ( log `  p ) ) ) )  -  ( log `  p ) )  <_  ( log `  A
) )
16919, 150, 21, 168fsumle 12257 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( ( ( log `  p )  x.  ( |_ `  ( ( log `  A
)  /  ( log `  p ) ) ) )  -  ( log `  p ) )  <_  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
) )
170149, 169eqbrtrd 4043 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  <_  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
) )
17123recnd 8861 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( log `  A
)  e.  CC )
172 fsumconst 12252 . . . . 5  |-  ( ( ( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  e.  Fin  /\  ( log `  A )  e.  CC )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) ( log `  A
)  =  ( (
# `  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime ) )  x.  ( log `  A ) ) )
17319, 171, 172syl2anc 642 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
)  =  ( (
# `  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime ) )  x.  ( log `  A ) ) )
174 hashcl 11350 . . . . . . 7  |-  ( ( ( 0 [,] ( sqr `  A ) )  i^i  Prime )  e.  Fin  ->  ( # `  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  e. 
NN0 )
17519, 174syl 15 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  e.  NN0 )
176175nn0red 10019 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  e.  RR )
177 logge0 19959 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
0  <_  ( log `  A ) )
178 reflcl 10928 . . . . . . 7  |-  ( ( sqr `  A )  e.  RR  ->  ( |_ `  ( sqr `  A
) )  e.  RR )
17917, 178syl 15 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  ( sqr `  A ) )  e.  RR )
180 fzfid 11035 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 1 ... ( |_ `  ( sqr `  A
) ) )  e. 
Fin )
181 ppisval 20341 . . . . . . . . . . 11  |-  ( ( sqr `  A )  e.  RR  ->  (
( 0 [,] ( sqr `  A ) )  i^i  Prime )  =  ( ( 2 ... ( |_ `  ( sqr `  A
) ) )  i^i 
Prime ) )
18217, 181syl 15 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  =  ( ( 2 ... ( |_ `  ( sqr `  A ) ) )  i^i  Prime ) )
183 inss1 3389 . . . . . . . . . . 11  |-  ( ( 2 ... ( |_
`  ( sqr `  A
) ) )  i^i 
Prime )  C_  ( 2 ... ( |_ `  ( sqr `  A ) ) )
184 2nn 9877 . . . . . . . . . . . . 13  |-  2  e.  NN
185 nnuz 10263 . . . . . . . . . . . . 13  |-  NN  =  ( ZZ>= `  1 )
186184, 185eleqtri 2355 . . . . . . . . . . . 12  |-  2  e.  ( ZZ>= `  1 )
187 fzss1 10830 . . . . . . . . . . . 12  |-  ( 2  e.  ( ZZ>= `  1
)  ->  ( 2 ... ( |_ `  ( sqr `  A ) ) )  C_  (
1 ... ( |_ `  ( sqr `  A ) ) ) )
188186, 187mp1i 11 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( 2 ... ( |_ `  ( sqr `  A
) ) )  C_  ( 1 ... ( |_ `  ( sqr `  A
) ) ) )
189183, 188syl5ss 3190 . . . . . . . . . 10  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 2 ... ( |_ `  ( sqr `  A ) ) )  i^i  Prime )  C_  ( 1 ... ( |_ `  ( sqr `  A
) ) ) )
190182, 189eqsstrd 3212 . . . . . . . . 9  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) 
C_  ( 1 ... ( |_ `  ( sqr `  A ) ) ) )
191 ssdomg 6907 . . . . . . . . 9  |-  ( ( 1 ... ( |_
`  ( sqr `  A
) ) )  e. 
Fin  ->  ( ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime )  C_  ( 1 ... ( |_ `  ( sqr `  A ) ) )  ->  (
( 0 [,] ( sqr `  A ) )  i^i  Prime )  ~<_  ( 1 ... ( |_ `  ( sqr `  A ) ) ) ) )
192180, 190, 191sylc 56 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  ~<_  ( 1 ... ( |_ `  ( sqr `  A
) ) ) )
193 hashdom 11361 . . . . . . . . 9  |-  ( ( ( ( 0 [,] ( sqr `  A
) )  i^i  Prime )  e.  Fin  /\  (
1 ... ( |_ `  ( sqr `  A ) ) )  e.  Fin )  ->  ( ( # `  ( ( 0 [,] ( sqr `  A
) )  i^i  Prime ) )  <_  ( # `  (
1 ... ( |_ `  ( sqr `  A ) ) ) )  <->  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime )  ~<_  ( 1 ... ( |_ `  ( sqr `  A ) ) ) ) )
19419, 180, 193syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( # `  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  <_ 
( # `  ( 1 ... ( |_ `  ( sqr `  A ) ) ) )  <->  ( (
0 [,] ( sqr `  A ) )  i^i 
Prime )  ~<_  ( 1 ... ( |_ `  ( sqr `  A ) ) ) ) )
195192, 194mpbird 223 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  <_  ( # `
 ( 1 ... ( |_ `  ( sqr `  A ) ) ) ) )
196 flge0nn0 10948 . . . . . . . . 9  |-  ( ( ( sqr `  A
)  e.  RR  /\  0  <_  ( sqr `  A
) )  ->  ( |_ `  ( sqr `  A
) )  e.  NN0 )
19717, 58, 196syl2anc 642 . . . . . . . 8  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  ( sqr `  A ) )  e.  NN0 )
198 hashfz1 11345 . . . . . . . 8  |-  ( ( |_ `  ( sqr `  A ) )  e. 
NN0  ->  ( # `  (
1 ... ( |_ `  ( sqr `  A ) ) ) )  =  ( |_ `  ( sqr `  A ) ) )
199197, 198syl 15 . . . . . . 7  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( 1 ... ( |_ `  ( sqr `  A ) ) ) )  =  ( |_ `  ( sqr `  A ) ) )
200195, 199breqtrd 4047 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  <_  ( |_ `  ( sqr `  A
) ) )
201 flle 10931 . . . . . . 7  |-  ( ( sqr `  A )  e.  RR  ->  ( |_ `  ( sqr `  A
) )  <_  ( sqr `  A ) )
20217, 201syl 15 . . . . . 6  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( |_ `  ( sqr `  A ) )  <_  ( sqr `  A
) )
203176, 179, 17, 200, 202letrd 8973 . . . . 5  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( # `  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) )  <_  ( sqr `  A ) )
204176, 17, 23, 177, 203lemul1ad 9696 . . . 4  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( # `  (
( 0 [,] ( sqr `  A ) )  i^i  Prime ) )  x.  ( log `  A
) )  <_  (
( sqr `  A
)  x.  ( log `  A ) ) )
205173, 204eqbrtrd 4043 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A )  ->  sum_ p  e.  ( ( 0 [,] ( sqr `  A ) )  i^i 
Prime ) ( log `  A
)  <_  ( ( sqr `  A )  x.  ( log `  A
) ) )
2065, 22, 24, 170, 205letrd 8973 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( (ψ `  A
)  -  ( theta `  A ) )  <_ 
( ( sqr `  A
)  x.  ( log `  A ) ) )
2072, 4, 24lesubadd2d 9371 . 2  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
( ( (ψ `  A )  -  ( theta `  A ) )  <_  ( ( sqr `  A )  x.  ( log `  A ) )  <-> 
(ψ `  A )  <_  ( ( theta `  A
)  +  ( ( sqr `  A )  x.  ( log `  A
) ) ) ) )
208206, 207mpbid 201 1  |-  ( ( A  e.  RR  /\  1  <_  A )  -> 
(ψ `  A )  <_  ( ( theta `  A
)  +  ( ( sqr `  A )  x.  ( log `  A
) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    \ cdif 3149    i^i cin 3151    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858    ~<_ cdom 6861   Fincfn 6863   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   [,]cicc 10659   ...cfz 10782   |_cfl 10924   ^cexp 11104   #chash 11337   sqrcsqr 11718   sum_csu 12158   Primecprime 12758   logclog 19912   thetaccht 20328  ψcchp 20330
This theorem is referenced by:  chpchtlim  20628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-dvds 12532  df-gcd 12686  df-prm 12759  df-pc 12890  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217  df-log 19914  df-cht 20334  df-vma 20335  df-chp 20336
  Copyright terms: Public domain W3C validator