![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
Mirrors > Home > MPE Home > Th. List > chrid | Unicode version |
Description: The canonical ![]() |
Ref | Expression |
---|---|
chrcl.c |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
chrid.l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
chrid.z |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
chrid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chrcl.c |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | chrcl 16770 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | nn0zd 10337 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | eqid 2412 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | chrid.l |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | eqid 2412 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | eqid 2412 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 4, 5, 6, 7 | zrhmulg 16754 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 3, 8 | mpdan 650 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | eqid 2412 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 10, 7, 1 | chrval 16769 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 11 | oveq1i 6058 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | eqid 2412 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | 13, 7 | rngidcl 15647 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
15 | chrid.z |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | 13, 10, 6, 15 | odid 15139 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 14, 16 | syl 16 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | 12, 17 | syl5eqr 2458 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
19 | 9, 18 | eqtrd 2444 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem is referenced by: chrrhm 16775 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-3 7 ax-mp 8 ax-gen 1552 ax-5 1563 ax-17 1623 ax-9 1662 ax-8 1683 ax-13 1723 ax-14 1725 ax-6 1740 ax-7 1745 ax-11 1757 ax-12 1946 ax-ext 2393 ax-rep 4288 ax-sep 4298 ax-nul 4306 ax-pow 4345 ax-pr 4371 ax-un 4668 ax-inf2 7560 ax-cnex 9010 ax-resscn 9011 ax-1cn 9012 ax-icn 9013 ax-addcl 9014 ax-addrcl 9015 ax-mulcl 9016 ax-mulrcl 9017 ax-mulcom 9018 ax-addass 9019 ax-mulass 9020 ax-distr 9021 ax-i2m1 9022 ax-1ne0 9023 ax-1rid 9024 ax-rnegex 9025 ax-rrecex 9026 ax-cnre 9027 ax-pre-lttri 9028 ax-pre-lttrn 9029 ax-pre-ltadd 9030 ax-pre-mulgt0 9031 ax-addf 9033 ax-mulf 9034 |
This theorem depends on definitions: df-bi 178 df-or 360 df-an 361 df-3or 937 df-3an 938 df-tru 1325 df-ex 1548 df-nf 1551 df-sb 1656 df-eu 2266 df-mo 2267 df-clab 2399 df-cleq 2405 df-clel 2408 df-nfc 2537 df-ne 2577 df-nel 2578 df-ral 2679 df-rex 2680 df-reu 2681 df-rmo 2682 df-rab 2683 df-v 2926 df-sbc 3130 df-csb 3220 df-dif 3291 df-un 3293 df-in 3295 df-ss 3302 df-pss 3304 df-nul 3597 df-if 3708 df-pw 3769 df-sn 3788 df-pr 3789 df-tp 3790 df-op 3791 df-uni 3984 df-int 4019 df-iun 4063 df-br 4181 df-opab 4235 df-mpt 4236 df-tr 4271 df-eprel 4462 df-id 4466 df-po 4471 df-so 4472 df-fr 4509 df-we 4511 df-ord 4552 df-on 4553 df-lim 4554 df-suc 4555 df-om 4813 df-xp 4851 df-rel 4852 df-cnv 4853 df-co 4854 df-dm 4855 df-rn 4856 df-res 4857 df-ima 4858 df-iota 5385 df-fun 5423 df-fn 5424 df-f 5425 df-f1 5426 df-fo 5427 df-f1o 5428 df-fv 5429 df-ov 6051 df-oprab 6052 df-mpt2 6053 df-1st 6316 df-2nd 6317 df-riota 6516 df-recs 6600 df-rdg 6635 df-1o 6691 df-oadd 6695 df-er 6872 df-map 6987 df-en 7077 df-dom 7078 df-sdom 7079 df-fin 7080 df-sup 7412 df-pnf 9086 df-mnf 9087 df-xr 9088 df-ltxr 9089 df-le 9090 df-sub 9257 df-neg 9258 df-nn 9965 df-2 10022 df-3 10023 df-4 10024 df-5 10025 df-6 10026 df-7 10027 df-8 10028 df-9 10029 df-10 10030 df-n0 10186 df-z 10247 df-dec 10347 df-uz 10453 df-fz 11008 df-seq 11287 df-struct 13434 df-ndx 13435 df-slot 13436 df-base 13437 df-sets 13438 df-ress 13439 df-plusg 13505 df-mulr 13506 df-starv 13507 df-tset 13511 df-ple 13512 df-ds 13514 df-unif 13515 df-0g 13690 df-mnd 14653 df-mhm 14701 df-grp 14775 df-minusg 14776 df-mulg 14778 df-subg 14904 df-ghm 14967 df-od 15130 df-cmn 15377 df-mgp 15612 df-rng 15626 df-cring 15627 df-ur 15628 df-rnghom 15782 df-subrg 15829 df-cnfld 16667 df-zrh 16745 df-chr 16747 |
Copyright terms: Public domain | W3C validator |