HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem1 Unicode version

Theorem chscllem1 23127
Description: Lemma for chscl 23131. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1  |-  ( ph  ->  A  e.  CH )
chscl.2  |-  ( ph  ->  B  e.  CH )
chscl.3  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
chscl.4  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
chscl.5  |-  ( ph  ->  H  ~~>v  u )
chscl.6  |-  F  =  ( n  e.  NN  |->  ( ( proj  h `  A ) `  ( H `  n )
) )
Assertion
Ref Expression
chscllem1  |-  ( ph  ->  F : NN --> A )
Distinct variable groups:    u, n, A    ph, n    B, n, u    n, H, u
Allowed substitution hints:    ph( u)    F( u, n)

Proof of Theorem chscllem1
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2435 . . . 4  |-  ( (
proj  h `  A ) `
 ( H `  n ) )  =  ( ( proj  h `  A ) `  ( H `  n )
)
2 chscl.1 . . . . . 6  |-  ( ph  ->  A  e.  CH )
32adantr 452 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  A  e. 
CH )
4 chscl.4 . . . . . . 7  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
54ffvelrnda 5861 . . . . . 6  |-  ( (
ph  /\  n  e.  NN )  ->  ( H `
 n )  e.  ( A  +H  B
) )
6 chscl.2 . . . . . . . . . 10  |-  ( ph  ->  B  e.  CH )
7 chsh 22715 . . . . . . . . . 10  |-  ( B  e.  CH  ->  B  e.  SH )
86, 7syl 16 . . . . . . . . 9  |-  ( ph  ->  B  e.  SH )
9 chsh 22715 . . . . . . . . . . 11  |-  ( A  e.  CH  ->  A  e.  SH )
102, 9syl 16 . . . . . . . . . 10  |-  ( ph  ->  A  e.  SH )
11 shocsh 22774 . . . . . . . . . 10  |-  ( A  e.  SH  ->  ( _|_ `  A )  e.  SH )
1210, 11syl 16 . . . . . . . . 9  |-  ( ph  ->  ( _|_ `  A
)  e.  SH )
13 chscl.3 . . . . . . . . 9  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
14 shless 22849 . . . . . . . . 9  |-  ( ( ( B  e.  SH  /\  ( _|_ `  A
)  e.  SH  /\  A  e.  SH )  /\  B  C_  ( _|_ `  A ) )  -> 
( B  +H  A
)  C_  ( ( _|_ `  A )  +H  A ) )
158, 12, 10, 13, 14syl31anc 1187 . . . . . . . 8  |-  ( ph  ->  ( B  +H  A
)  C_  ( ( _|_ `  A )  +H  A ) )
16 shscom 22809 . . . . . . . . 9  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  ( B  +H  A ) )
1710, 8, 16syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( A  +H  B
)  =  ( B  +H  A ) )
18 shscom 22809 . . . . . . . . 9  |-  ( ( A  e.  SH  /\  ( _|_ `  A )  e.  SH )  -> 
( A  +H  ( _|_ `  A ) )  =  ( ( _|_ `  A )  +H  A
) )
1910, 12, 18syl2anc 643 . . . . . . . 8  |-  ( ph  ->  ( A  +H  ( _|_ `  A ) )  =  ( ( _|_ `  A )  +H  A
) )
2015, 17, 193sstr4d 3383 . . . . . . 7  |-  ( ph  ->  ( A  +H  B
)  C_  ( A  +H  ( _|_ `  A
) ) )
2120sselda 3340 . . . . . 6  |-  ( (
ph  /\  ( H `  n )  e.  ( A  +H  B ) )  ->  ( H `  n )  e.  ( A  +H  ( _|_ `  A ) ) )
225, 21syldan 457 . . . . 5  |-  ( (
ph  /\  n  e.  NN )  ->  ( H `
 n )  e.  ( A  +H  ( _|_ `  A ) ) )
23 pjpreeq 22888 . . . . 5  |-  ( ( A  e.  CH  /\  ( H `  n )  e.  ( A  +H  ( _|_ `  A ) ) )  ->  (
( ( proj  h `  A ) `  ( H `  n )
)  =  ( (
proj  h `  A ) `
 ( H `  n ) )  <->  ( (
( proj  h `  A
) `  ( H `  n ) )  e.  A  /\  E. x  e.  ( _|_ `  A
) ( H `  n )  =  ( ( ( proj  h `  A ) `  ( H `  n )
)  +h  x ) ) ) )
243, 22, 23syl2anc 643 . . . 4  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( proj  h `  A
) `  ( H `  n ) )  =  ( ( proj  h `  A ) `  ( H `  n )
)  <->  ( ( (
proj  h `  A ) `
 ( H `  n ) )  e.  A  /\  E. x  e.  ( _|_ `  A
) ( H `  n )  =  ( ( ( proj  h `  A ) `  ( H `  n )
)  +h  x ) ) ) )
251, 24mpbii 203 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( ( proj  h `  A
) `  ( H `  n ) )  e.  A  /\  E. x  e.  ( _|_ `  A
) ( H `  n )  =  ( ( ( proj  h `  A ) `  ( H `  n )
)  +h  x ) ) )
2625simpld 446 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  ( (
proj  h `  A ) `
 ( H `  n ) )  e.  A )
27 chscl.6 . 2  |-  F  =  ( n  e.  NN  |->  ( ( proj  h `  A ) `  ( H `  n )
) )
2826, 27fmptd 5884 1  |-  ( ph  ->  F : NN --> A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   E.wrex 2698    C_ wss 3312   class class class wbr 4204    e. cmpt 4258   -->wf 5441   ` cfv 5445  (class class class)co 6072   NNcn 9989    +h cva 22411    ~~>v chli 22418   SHcsh 22419   CHcch 22420   _|_cort 22421    +H cph 22422   proj 
hcpjh 22428
This theorem is referenced by:  chscllem2  23128  chscllem3  23129  chscllem4  23130
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4692  ax-resscn 9036  ax-1cn 9037  ax-icn 9038  ax-addcl 9039  ax-addrcl 9040  ax-mulcl 9041  ax-mulrcl 9042  ax-mulcom 9043  ax-addass 9044  ax-mulass 9045  ax-distr 9046  ax-i2m1 9047  ax-1ne0 9048  ax-1rid 9049  ax-rnegex 9050  ax-rrecex 9051  ax-cnre 9052  ax-pre-lttri 9053  ax-pre-lttrn 9054  ax-pre-ltadd 9055  ax-pre-mulgt0 9056  ax-hilex 22490  ax-hfvadd 22491  ax-hvcom 22492  ax-hvass 22493  ax-hv0cl 22494  ax-hvaddid 22495  ax-hfvmul 22496  ax-hvmulid 22497  ax-hvmulass 22498  ax-hvdistr1 22499  ax-hvdistr2 22500  ax-hvmul0 22501  ax-hfi 22569  ax-his2 22573  ax-his3 22574  ax-his4 22575
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-po 4495  df-so 4496  df-xp 4875  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-ov 6075  df-oprab 6076  df-mpt2 6077  df-riota 6540  df-er 6896  df-en 7101  df-dom 7102  df-sdom 7103  df-pnf 9111  df-mnf 9112  df-xr 9113  df-ltxr 9114  df-le 9115  df-sub 9282  df-neg 9283  df-div 9667  df-grpo 21767  df-ablo 21858  df-hvsub 22462  df-sh 22697  df-ch 22712  df-oc 22742  df-ch0 22743  df-shs 22798  df-pjh 22885
  Copyright terms: Public domain W3C validator