HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem2 Structured version   Unicode version

Theorem chscllem2 23145
Description: Lemma for chscl 23148. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1  |-  ( ph  ->  A  e.  CH )
chscl.2  |-  ( ph  ->  B  e.  CH )
chscl.3  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
chscl.4  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
chscl.5  |-  ( ph  ->  H  ~~>v  u )
chscl.6  |-  F  =  ( n  e.  NN  |->  ( ( proj  h `  A ) `  ( H `  n )
) )
Assertion
Ref Expression
chscllem2  |-  ( ph  ->  F  e.  dom  ~~>v  )
Distinct variable groups:    u, n, A    ph, n    B, n, u    n, H, u
Allowed substitution hints:    ph( u)    F( u, n)

Proof of Theorem chscllem2
Dummy variables  j  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chscl.1 . . . . 5  |-  ( ph  ->  A  e.  CH )
2 chscl.2 . . . . 5  |-  ( ph  ->  B  e.  CH )
3 chscl.3 . . . . 5  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
4 chscl.4 . . . . 5  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
5 chscl.5 . . . . 5  |-  ( ph  ->  H  ~~>v  u )
6 chscl.6 . . . . 5  |-  F  =  ( n  e.  NN  |->  ( ( proj  h `  A ) `  ( H `  n )
) )
71, 2, 3, 4, 5, 6chscllem1 23144 . . . 4  |-  ( ph  ->  F : NN --> A )
8 chss 22737 . . . . 5  |-  ( A  e.  CH  ->  A  C_ 
~H )
91, 8syl 16 . . . 4  |-  ( ph  ->  A  C_  ~H )
10 fss 5602 . . . 4  |-  ( ( F : NN --> A  /\  A  C_  ~H )  ->  F : NN --> ~H )
117, 9, 10syl2anc 644 . . 3  |-  ( ph  ->  F : NN --> ~H )
12 hlimcaui 22744 . . . . . . 7  |-  ( H 
~~>v  u  ->  H  e.  Cauchy )
135, 12syl 16 . . . . . 6  |-  ( ph  ->  H  e.  Cauchy )
14 hcaucvg 22693 . . . . . 6  |-  ( ( H  e.  Cauchy  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  < 
x )
1513, 14sylan 459 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  < 
x )
16 nnuz 10526 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
1716uztrn2 10508 . . . . . . . . 9  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
1817adantll 696 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>=
`  j ) )  ->  k  e.  NN )
19 chsh 22732 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A  e.  CH  ->  A  e.  SH )
201, 19syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  A  e.  SH )
21 chsh 22732 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( B  e.  CH  ->  B  e.  SH )
222, 21syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  B  e.  SH )
23 shscl 22825 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  e.  SH )
2420, 22, 23syl2anc 644 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( A  +H  B
)  e.  SH )
25 shss 22717 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  +H  B )  e.  SH  ->  ( A  +H  B )  C_  ~H )
2624, 25syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( A  +H  B
)  C_  ~H )
2726adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  NN )  ->  ( A  +H  B )  C_  ~H )
284ffvelrnda 5873 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  NN )  ->  ( H `
 j )  e.  ( A  +H  B
) )
2927, 28sseldd 3351 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN )  ->  ( H `
 j )  e. 
~H )
3029adantrr 699 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( H `  j
)  e.  ~H )
31 fss 5602 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( H : NN --> ( A  +H  B )  /\  ( A  +H  B
)  C_  ~H )  ->  H : NN --> ~H )
324, 26, 31syl2anc 644 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  H : NN --> ~H )
3332adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  ->  H : NN --> ~H )
34 simprr 735 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
k  e.  NN )
3533, 34ffvelrnd 5874 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( H `  k
)  e.  ~H )
36 hvsubcl 22525 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( H `  j
)  e.  ~H  /\  ( H `  k )  e.  ~H )  -> 
( ( H `  j )  -h  ( H `  k )
)  e.  ~H )
3730, 35, 36syl2anc 644 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( H `  j )  -h  ( H `  k )
)  e.  ~H )
389adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  NN )  ->  A  C_  ~H )
397ffvelrnda 5873 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  e.  A )
4038, 39sseldd 3351 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  e. 
~H )
4140adantrr 699 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( F `  j
)  e.  ~H )
429adantr 453 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  ->  A  C_  ~H )
437adantr 453 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  ->  F : NN --> A )
4443, 34ffvelrnd 5874 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( F `  k
)  e.  A )
4542, 44sseldd 3351 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( F `  k
)  e.  ~H )
46 hvsubcl 22525 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F `  j
)  e.  ~H  /\  ( F `  k )  e.  ~H )  -> 
( ( F `  j )  -h  ( F `  k )
)  e.  ~H )
4741, 45, 46syl2anc 644 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( F `  j )  -h  ( F `  k )
)  e.  ~H )
48 hvsubcl 22525 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( H `  j )  -h  ( H `  k )
)  e.  ~H  /\  ( ( F `  j )  -h  ( F `  k )
)  e.  ~H )  ->  ( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) )  e.  ~H )
4937, 47, 48syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) )  e.  ~H )
50 normcl 22632 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) )  e.  ~H  ->  ( normh `  ( ( ( H `  j )  -h  ( H `  k ) )  -h  ( ( F `  j )  -h  ( F `  k )
) ) )  e.  RR )
5149, 50syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( normh `  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) )  e.  RR )
5251sqge0d 11555 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
0  <_  ( ( normh `  ( ( ( H `  j )  -h  ( H `  k ) )  -h  ( ( F `  j )  -h  ( F `  k )
) ) ) ^
2 ) )
53 normcl 22632 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  j
)  -h  ( F `
 k ) )  e.  ~H  ->  ( normh `  ( ( F `
 j )  -h  ( F `  k
) ) )  e.  RR )
5447, 53syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  e.  RR )
5554resqcld 11554 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( F `  j
)  -h  ( F `
 k ) ) ) ^ 2 )  e.  RR )
5651resqcld 11554 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) ) ^ 2 )  e.  RR )
5755, 56addge01d 9619 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( 0  <_  (
( normh `  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ^ 2 )  <->  ( ( normh `  ( ( F `
 j )  -h  ( F `  k
) ) ) ^
2 )  <_  (
( ( normh `  (
( F `  j
)  -h  ( F `
 k ) ) ) ^ 2 )  +  ( ( normh `  ( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) ) ) ^ 2 ) ) ) )
5852, 57mpbid 203 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( F `  j
)  -h  ( F `
 k ) ) ) ^ 2 )  <_  ( ( (
normh `  ( ( F `
 j )  -h  ( F `  k
) ) ) ^
2 )  +  ( ( normh `  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ^ 2 ) ) )
5920adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  ->  A  e.  SH )
6039adantrr 699 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( F `  j
)  e.  A )
61 shsubcl 22728 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  SH  /\  ( F `  j )  e.  A  /\  ( F `  k )  e.  A )  ->  (
( F `  j
)  -h  ( F `
 k ) )  e.  A )
6259, 60, 44, 61syl3anc 1185 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( F `  j )  -h  ( F `  k )
)  e.  A )
63 hvsubsub4 22567 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( H `  j )  e.  ~H  /\  ( H `  k
)  e.  ~H )  /\  ( ( F `  j )  e.  ~H  /\  ( F `  k
)  e.  ~H )
)  ->  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) )  =  ( ( ( H `
 j )  -h  ( F `  j
) )  -h  (
( H `  k
)  -h  ( F `
 k ) ) ) )
6430, 35, 41, 45, 63syl22anc 1186 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) )  =  ( ( ( H `  j
)  -h  ( F `
 j ) )  -h  ( ( H `
 k )  -h  ( F `  k
) ) ) )
65 ocsh 22790 . . . . . . . . . . . . . . . . . . 19  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  e.  SH )
6642, 65syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( _|_ `  A
)  e.  SH )
67 fveq2 5731 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  =  j  ->  ( H `  n )  =  ( H `  j ) )
6867fveq2d 5735 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  j  ->  (
( proj  h `  A
) `  ( H `  n ) )  =  ( ( proj  h `  A ) `  ( H `  j )
) )
69 fvex 5745 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
proj  h `  A ) `
 ( H `  j ) )  e. 
_V
7068, 6, 69fvmpt 5809 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  e.  NN  ->  ( F `  j )  =  ( ( proj 
h `  A ) `  ( H `  j
) ) )
7170eqcomd 2443 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  (
( proj  h `  A
) `  ( H `  j ) )  =  ( F `  j
) )
7271adantl 454 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  j  e.  NN )  ->  ( (
proj  h `  A ) `
 ( H `  j ) )  =  ( F `  j
) )
731adantr 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  j  e.  NN )  ->  A  e. 
CH )
749, 65syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( _|_ `  A
)  e.  SH )
75 shless 22866 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( B  e.  SH  /\  ( _|_ `  A
)  e.  SH  /\  A  e.  SH )  /\  B  C_  ( _|_ `  A ) )  -> 
( B  +H  A
)  C_  ( ( _|_ `  A )  +H  A ) )
7622, 74, 20, 3, 75syl31anc 1188 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( B  +H  A
)  C_  ( ( _|_ `  A )  +H  A ) )
77 shscom 22826 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  ( B  +H  A ) )
7820, 22, 77syl2anc 644 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( A  +H  B
)  =  ( B  +H  A ) )
79 shscom 22826 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  SH  /\  ( _|_ `  A )  e.  SH )  -> 
( A  +H  ( _|_ `  A ) )  =  ( ( _|_ `  A )  +H  A
) )
8020, 74, 79syl2anc 644 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( A  +H  ( _|_ `  A ) )  =  ( ( _|_ `  A )  +H  A
) )
8176, 78, 803sstr4d 3393 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( A  +H  B
)  C_  ( A  +H  ( _|_ `  A
) ) )
8281adantr 453 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  j  e.  NN )  ->  ( A  +H  B )  C_  ( A  +H  ( _|_ `  A ) ) )
8382, 28sseldd 3351 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  j  e.  NN )  ->  ( H `
 j )  e.  ( A  +H  ( _|_ `  A ) ) )
84 pjpreeq 22905 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CH  /\  ( H `  j )  e.  ( A  +H  ( _|_ `  A ) ) )  ->  (
( ( proj  h `  A ) `  ( H `  j )
)  =  ( F `
 j )  <->  ( ( F `  j )  e.  A  /\  E. x  e.  ( _|_ `  A
) ( H `  j )  =  ( ( F `  j
)  +h  x ) ) ) )
8573, 83, 84syl2anc 644 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( ( proj  h `  A
) `  ( H `  j ) )  =  ( F `  j
)  <->  ( ( F `
 j )  e.  A  /\  E. x  e.  ( _|_ `  A
) ( H `  j )  =  ( ( F `  j
)  +h  x ) ) ) )
8672, 85mpbid 203 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( F `  j )  e.  A  /\  E. x  e.  ( _|_ `  A ) ( H `
 j )  =  ( ( F `  j )  +h  x
) ) )
8786simprd 451 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  j  e.  NN )  ->  E. x  e.  ( _|_ `  A
) ( H `  j )  =  ( ( F `  j
)  +h  x ) )
8829adantr 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  j  e.  NN )  /\  x  e.  ( _|_ `  A
) )  ->  ( H `  j )  e.  ~H )
8940adantr 453 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  j  e.  NN )  /\  x  e.  ( _|_ `  A
) )  ->  ( F `  j )  e.  ~H )
90 shss 22717 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( _|_ `  A )  e.  SH  ->  ( _|_ `  A )  C_  ~H )
9174, 90syl 16 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( _|_ `  A
)  C_  ~H )
9291adantr 453 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  j  e.  NN )  ->  ( _|_ `  A )  C_  ~H )
9392sselda 3350 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  j  e.  NN )  /\  x  e.  ( _|_ `  A
) )  ->  x  e.  ~H )
94 hvsubadd 22584 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( H `  j
)  e.  ~H  /\  ( F `  j )  e.  ~H  /\  x  e.  ~H )  ->  (
( ( H `  j )  -h  ( F `  j )
)  =  x  <->  ( ( F `  j )  +h  x )  =  ( H `  j ) ) )
9588, 89, 93, 94syl3anc 1185 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  j  e.  NN )  /\  x  e.  ( _|_ `  A
) )  ->  (
( ( H `  j )  -h  ( F `  j )
)  =  x  <->  ( ( F `  j )  +h  x )  =  ( H `  j ) ) )
96 eqcom 2440 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  ( ( H `
 j )  -h  ( F `  j
) )  <->  ( ( H `  j )  -h  ( F `  j
) )  =  x )
97 eqcom 2440 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( H `  j )  =  ( ( F `
 j )  +h  x )  <->  ( ( F `  j )  +h  x )  =  ( H `  j ) )
9895, 96, 973bitr4g 281 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  j  e.  NN )  /\  x  e.  ( _|_ `  A
) )  ->  (
x  =  ( ( H `  j )  -h  ( F `  j ) )  <->  ( H `  j )  =  ( ( F `  j
)  +h  x ) ) )
9998rexbidva 2724 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  j  e.  NN )  ->  ( E. x  e.  ( _|_ `  A ) x  =  ( ( H `  j )  -h  ( F `  j )
)  <->  E. x  e.  ( _|_ `  A ) ( H `  j
)  =  ( ( F `  j )  +h  x ) ) )
10087, 99mpbird 225 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  NN )  ->  E. x  e.  ( _|_ `  A
) x  =  ( ( H `  j
)  -h  ( F `
 j ) ) )
101 risset 2755 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( H `  j
)  -h  ( F `
 j ) )  e.  ( _|_ `  A
)  <->  E. x  e.  ( _|_ `  A ) x  =  ( ( H `  j )  -h  ( F `  j ) ) )
102100, 101sylibr 205 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( H `  j )  -h  ( F `  j ) )  e.  ( _|_ `  A
) )
103102adantrr 699 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( H `  j )  -h  ( F `  j )
)  e.  ( _|_ `  A ) )
104 eleq1 2498 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  k  ->  (
j  e.  NN  <->  k  e.  NN ) )
105104anbi2d 686 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  k  ->  (
( ph  /\  j  e.  NN )  <->  ( ph  /\  k  e.  NN ) ) )
106 fveq2 5731 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  =  k  ->  ( H `  j )  =  ( H `  k ) )
107 fveq2 5731 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  =  k  ->  ( F `  j )  =  ( F `  k ) )
108106, 107oveq12d 6102 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  k  ->  (
( H `  j
)  -h  ( F `
 j ) )  =  ( ( H `
 k )  -h  ( F `  k
) ) )
109108eleq1d 2504 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  k  ->  (
( ( H `  j )  -h  ( F `  j )
)  e.  ( _|_ `  A )  <->  ( ( H `  k )  -h  ( F `  k
) )  e.  ( _|_ `  A ) ) )
110105, 109imbi12d 313 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  k  ->  (
( ( ph  /\  j  e.  NN )  ->  ( ( H `  j )  -h  ( F `  j )
)  e.  ( _|_ `  A ) )  <->  ( ( ph  /\  k  e.  NN )  ->  ( ( H `
 k )  -h  ( F `  k
) )  e.  ( _|_ `  A ) ) ) )
111110, 102chvarv 1970 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( H `  k )  -h  ( F `  k ) )  e.  ( _|_ `  A
) )
112111adantrl 698 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( H `  k )  -h  ( F `  k )
)  e.  ( _|_ `  A ) )
113 shsubcl 22728 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( _|_ `  A
)  e.  SH  /\  ( ( H `  j )  -h  ( F `  j )
)  e.  ( _|_ `  A )  /\  (
( H `  k
)  -h  ( F `
 k ) )  e.  ( _|_ `  A
) )  ->  (
( ( H `  j )  -h  ( F `  j )
)  -h  ( ( H `  k )  -h  ( F `  k ) ) )  e.  ( _|_ `  A
) )
11466, 103, 112, 113syl3anc 1185 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( H `
 j )  -h  ( F `  j
) )  -h  (
( H `  k
)  -h  ( F `
 k ) ) )  e.  ( _|_ `  A ) )
11564, 114eqeltrd 2512 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) )  e.  ( _|_ `  A ) )
116 shocorth 22799 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  SH  ->  (
( ( ( F `
 j )  -h  ( F `  k
) )  e.  A  /\  ( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) )  e.  ( _|_ `  A ) )  -> 
( ( ( F `
 j )  -h  ( F `  k
) )  .ih  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) )  =  0 ) )
11759, 116syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( ( F `  j )  -h  ( F `  k ) )  e.  A  /\  ( ( ( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) )  e.  ( _|_ `  A
) )  ->  (
( ( F `  j )  -h  ( F `  k )
)  .ih  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) )  =  0 ) )
11862, 115, 117mp2and 662 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( F `
 j )  -h  ( F `  k
) )  .ih  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) )  =  0 )
119 normpyth 22652 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F `  j )  -h  ( F `  k )
)  e.  ~H  /\  ( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) )  e.  ~H )  ->  ( ( ( ( F `  j )  -h  ( F `  k ) )  .ih  ( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) ) )  =  0  ->  ( ( normh `  ( ( ( F `
 j )  -h  ( F `  k
) )  +h  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) ) ) ^ 2 )  =  ( ( ( normh `  ( ( F `  j )  -h  ( F `  k
) ) ) ^
2 )  +  ( ( normh `  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ^ 2 ) ) ) )
12047, 49, 119syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( ( F `  j )  -h  ( F `  k ) )  .ih  ( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) ) )  =  0  ->  ( ( normh `  ( ( ( F `
 j )  -h  ( F `  k
) )  +h  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) ) ) ^ 2 )  =  ( ( ( normh `  ( ( F `  j )  -h  ( F `  k
) ) ) ^
2 )  +  ( ( normh `  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ^ 2 ) ) ) )
121118, 120mpd 15 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( ( F `  j )  -h  ( F `  k )
)  +h  ( ( ( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ) ^ 2 )  =  ( ( (
normh `  ( ( F `
 j )  -h  ( F `  k
) ) ) ^
2 )  +  ( ( normh `  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ^ 2 ) ) )
122 hvpncan3 22549 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F `  j )  -h  ( F `  k )
)  e.  ~H  /\  ( ( H `  j )  -h  ( H `  k )
)  e.  ~H )  ->  ( ( ( F `
 j )  -h  ( F `  k
) )  +h  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) )  =  ( ( H `  j )  -h  ( H `  k ) ) )
12347, 37, 122syl2anc 644 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( F `
 j )  -h  ( F `  k
) )  +h  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) )  =  ( ( H `  j )  -h  ( H `  k ) ) )
124123fveq2d 5735 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( normh `  ( (
( F `  j
)  -h  ( F `
 k ) )  +h  ( ( ( H `  j )  -h  ( H `  k ) )  -h  ( ( F `  j )  -h  ( F `  k )
) ) ) )  =  ( normh `  (
( H `  j
)  -h  ( H `
 k ) ) ) )
125124oveq1d 6099 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( ( F `  j )  -h  ( F `  k )
)  +h  ( ( ( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ) ^ 2 )  =  ( ( normh `  ( ( H `  j )  -h  ( H `  k )
) ) ^ 2 ) )
126121, 125eqtr3d 2472 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( normh `  ( ( F `  j )  -h  ( F `  k )
) ) ^ 2 )  +  ( (
normh `  ( ( ( H `  j )  -h  ( H `  k ) )  -h  ( ( F `  j )  -h  ( F `  k )
) ) ) ^
2 ) )  =  ( ( normh `  (
( H `  j
)  -h  ( H `
 k ) ) ) ^ 2 ) )
12758, 126breqtrd 4239 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( F `  j
)  -h  ( F `
 k ) ) ) ^ 2 )  <_  ( ( normh `  ( ( H `  j )  -h  ( H `  k )
) ) ^ 2 ) )
128 normcl 22632 . . . . . . . . . . . . . 14  |-  ( ( ( H `  j
)  -h  ( H `
 k ) )  e.  ~H  ->  ( normh `  ( ( H `
 j )  -h  ( H `  k
) ) )  e.  RR )
12937, 128syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  e.  RR )
130 normge0 22633 . . . . . . . . . . . . . 14  |-  ( ( ( F `  j
)  -h  ( F `
 k ) )  e.  ~H  ->  0  <_  ( normh `  ( ( F `  j )  -h  ( F `  k
) ) ) )
13147, 130syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
0  <_  ( normh `  ( ( F `  j )  -h  ( F `  k )
) ) )
132 normge0 22633 . . . . . . . . . . . . . 14  |-  ( ( ( H `  j
)  -h  ( H `
 k ) )  e.  ~H  ->  0  <_  ( normh `  ( ( H `  j )  -h  ( H `  k
) ) ) )
13337, 132syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
0  <_  ( normh `  ( ( H `  j )  -h  ( H `  k )
) ) )
13454, 129, 131, 133le2sqd 11563 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( F `  j
)  -h  ( F `
 k ) ) )  <_  ( normh `  ( ( H `  j )  -h  ( H `  k )
) )  <->  ( ( normh `  ( ( F `
 j )  -h  ( F `  k
) ) ) ^
2 )  <_  (
( normh `  ( ( H `  j )  -h  ( H `  k
) ) ) ^
2 ) ) )
135127, 134mpbird 225 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  <_ 
( normh `  ( ( H `  j )  -h  ( H `  k
) ) ) )
136135adantlr 697 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  k  e.  NN )
)  ->  ( normh `  ( ( F `  j )  -h  ( F `  k )
) )  <_  ( normh `  ( ( H `
 j )  -h  ( H `  k
) ) ) )
13754adantlr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  k  e.  NN )
)  ->  ( normh `  ( ( F `  j )  -h  ( F `  k )
) )  e.  RR )
138129adantlr 697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  k  e.  NN )
)  ->  ( normh `  ( ( H `  j )  -h  ( H `  k )
) )  e.  RR )
139 rpre 10623 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
140139ad2antlr 709 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  k  e.  NN )
)  ->  x  e.  RR )
141 lelttr 9170 . . . . . . . . . . 11  |-  ( ( ( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  e.  RR  /\  ( normh `  ( ( H `  j )  -h  ( H `  k )
) )  e.  RR  /\  x  e.  RR )  ->  ( ( (
normh `  ( ( F `
 j )  -h  ( F `  k
) ) )  <_ 
( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  /\  ( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  < 
x )  ->  ( normh `  ( ( F `
 j )  -h  ( F `  k
) ) )  < 
x ) )
142137, 138, 140, 141syl3anc 1185 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  k  e.  NN )
)  ->  ( (
( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  <_ 
( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  /\  ( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  < 
x )  ->  ( normh `  ( ( F `
 j )  -h  ( F `  k
) ) )  < 
x ) )
143136, 142mpand 658 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  k  e.  NN )
)  ->  ( ( normh `  ( ( H `
 j )  -h  ( H `  k
) ) )  < 
x  ->  ( normh `  ( ( F `  j )  -h  ( F `  k )
) )  <  x
) )
144143anassrs 631 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  NN )  ->  ( ( normh `  ( ( H `  j )  -h  ( H `  k )
) )  <  x  ->  ( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  < 
x ) )
14518, 144syldan 458 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( normh `  ( ( H `  j )  -h  ( H `  k )
) )  <  x  ->  ( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  < 
x ) )
146145ralimdva 2786 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) (
normh `  ( ( H `
 j )  -h  ( H `  k
) ) )  < 
x  ->  A. k  e.  ( ZZ>= `  j )
( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  < 
x ) )
147146reximdva 2820 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  < 
x  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  < 
x ) )
14815, 147mpd 15 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  < 
x )
149148ralrimiva 2791 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( F `  j )  -h  ( F `  k )
) )  <  x
)
150 hcau 22691 . . 3  |-  ( F  e.  Cauchy 
<->  ( F : NN --> ~H  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( F `  j )  -h  ( F `  k )
) )  <  x
) )
15111, 149, 150sylanbrc 647 . 2  |-  ( ph  ->  F  e.  Cauchy )
152 ax-hcompl 22709 . 2  |-  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
153 hlimf 22745 . . . . 5  |-  ~~>v  : dom  ~~>v  --> ~H
154 ffn 5594 . . . . 5  |-  (  ~~>v  : dom  ~~>v  --> ~H  ->  ~~>v  Fn  dom  ~~>v  )
155153, 154ax-mp 5 . . . 4  |-  ~~>v  Fn  dom  ~~>v
156 fnbr 5550 . . . 4  |-  ( ( 
~~>v  Fn  dom  ~~>v  /\  F  ~~>v  x )  ->  F  e.  dom  ~~>v  )
157155, 156mpan 653 . . 3  |-  ( F 
~~>v  x  ->  F  e.  dom 
~~>v  )
158157rexlimivw 2828 . 2  |-  ( E. x  e.  ~H  F  ~~>v  x  ->  F  e.  dom  ~~>v  )
159151, 152, 1583syl 19 1  |-  ( ph  ->  F  e.  dom  ~~>v  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   A.wral 2707   E.wrex 2708    C_ wss 3322   class class class wbr 4215    e. cmpt 4269   dom cdm 4881    Fn wfn 5452   -->wf 5453   ` cfv 5457  (class class class)co 6084   RRcr 8994   0cc0 8995   1c1 8996    + caddc 8998    < clt 9125    <_ cle 9126   NNcn 10005   2c2 10054   ZZ>=cuz 10493   RR+crp 10617   ^cexp 11387   ~Hchil 22427    +h cva 22428    .ih csp 22430   normhcno 22431    -h cmv 22433   Cauchyccau 22434    ~~>v chli 22435   SHcsh 22436   CHcch 22437   _|_cort 22438    +H cph 22439   proj  hcpjh 22445
This theorem is referenced by:  chscllem4  23147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075  ax-hilex 22507  ax-hfvadd 22508  ax-hvcom 22509  ax-hvass 22510  ax-hv0cl 22511  ax-hvaddid 22512  ax-hfvmul 22513  ax-hvmulid 22514  ax-hvmulass 22515  ax-hvdistr1 22516  ax-hvdistr2 22517  ax-hvmul0 22518  ax-hfi 22586  ax-his1 22589  ax-his2 22590  ax-his3 22591  ax-his4 22592  ax-hcompl 22709
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-er 6908  df-map 7023  df-pm 7024  df-en 7113  df-dom 7114  df-sdom 7115  df-sup 7449  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-n0 10227  df-z 10288  df-uz 10494  df-q 10580  df-rp 10618  df-xneg 10715  df-xadd 10716  df-xmul 10717  df-icc 10928  df-seq 11329  df-exp 11388  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-topgen 13672  df-psmet 16699  df-xmet 16700  df-met 16701  df-bl 16702  df-mopn 16703  df-top 16968  df-bases 16970  df-topon 16971  df-lm 17298  df-haus 17384  df-cau 19214  df-grpo 21784  df-gid 21785  df-ginv 21786  df-gdiv 21787  df-ablo 21875  df-vc 22030  df-nv 22076  df-va 22079  df-ba 22080  df-sm 22081  df-0v 22082  df-vs 22083  df-nmcv 22084  df-ims 22085  df-hnorm 22476  df-hvsub 22479  df-hlim 22480  df-hcau 22481  df-sh 22714  df-ch 22729  df-oc 22759  df-ch0 22760  df-shs 22815  df-pjh 22902
  Copyright terms: Public domain W3C validator