HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem2 Unicode version

Theorem chscllem2 22217
Description: Lemma for chscl 22220. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1  |-  ( ph  ->  A  e.  CH )
chscl.2  |-  ( ph  ->  B  e.  CH )
chscl.3  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
chscl.4  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
chscl.5  |-  ( ph  ->  H  ~~>v  u )
chscl.6  |-  F  =  ( n  e.  NN  |->  ( ( proj  h `  A ) `  ( H `  n )
) )
Assertion
Ref Expression
chscllem2  |-  ( ph  ->  F  e.  dom  ~~>v  )
Distinct variable groups:    u, n, A    ph, n    B, n, u    n, H, u
Allowed substitution hints:    ph( u)    F( u, n)

Proof of Theorem chscllem2
Dummy variables  j  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chscl.1 . . . . 5  |-  ( ph  ->  A  e.  CH )
2 chscl.2 . . . . 5  |-  ( ph  ->  B  e.  CH )
3 chscl.3 . . . . 5  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
4 chscl.4 . . . . 5  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
5 chscl.5 . . . . 5  |-  ( ph  ->  H  ~~>v  u )
6 chscl.6 . . . . 5  |-  F  =  ( n  e.  NN  |->  ( ( proj  h `  A ) `  ( H `  n )
) )
71, 2, 3, 4, 5, 6chscllem1 22216 . . . 4  |-  ( ph  ->  F : NN --> A )
8 chss 21809 . . . . 5  |-  ( A  e.  CH  ->  A  C_ 
~H )
91, 8syl 15 . . . 4  |-  ( ph  ->  A  C_  ~H )
10 fss 5397 . . . 4  |-  ( ( F : NN --> A  /\  A  C_  ~H )  ->  F : NN --> ~H )
117, 9, 10syl2anc 642 . . 3  |-  ( ph  ->  F : NN --> ~H )
12 hlimcaui 21816 . . . . . . 7  |-  ( H 
~~>v  u  ->  H  e.  Cauchy )
135, 12syl 15 . . . . . 6  |-  ( ph  ->  H  e.  Cauchy )
14 hcaucvg 21765 . . . . . 6  |-  ( ( H  e.  Cauchy  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  < 
x )
1513, 14sylan 457 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  < 
x )
16 nnuz 10263 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
1716uztrn2 10245 . . . . . . . . 9  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
1817adantll 694 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>=
`  j ) )  ->  k  e.  NN )
19 chsh 21804 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( A  e.  CH  ->  A  e.  SH )
201, 19syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  A  e.  SH )
21 chsh 21804 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( B  e.  CH  ->  B  e.  SH )
222, 21syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  B  e.  SH )
23 shscl 21897 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  e.  SH )
2420, 22, 23syl2anc 642 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( A  +H  B
)  e.  SH )
25 shss 21789 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  +H  B )  e.  SH  ->  ( A  +H  B )  C_  ~H )
2624, 25syl 15 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( A  +H  B
)  C_  ~H )
2726adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  NN )  ->  ( A  +H  B )  C_  ~H )
28 ffvelrn 5663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( H : NN --> ( A  +H  B )  /\  j  e.  NN )  ->  ( H `  j
)  e.  ( A  +H  B ) )
294, 28sylan 457 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  NN )  ->  ( H `
 j )  e.  ( A  +H  B
) )
3027, 29sseldd 3181 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN )  ->  ( H `
 j )  e. 
~H )
3130adantrr 697 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( H `  j
)  e.  ~H )
32 fss 5397 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( H : NN --> ( A  +H  B )  /\  ( A  +H  B
)  C_  ~H )  ->  H : NN --> ~H )
334, 26, 32syl2anc 642 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  H : NN --> ~H )
3433adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  ->  H : NN --> ~H )
35 simprr 733 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
k  e.  NN )
36 ffvelrn 5663 . . . . . . . . . . . . . . . . . . 19  |-  ( ( H : NN --> ~H  /\  k  e.  NN )  ->  ( H `  k
)  e.  ~H )
3734, 35, 36syl2anc 642 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( H `  k
)  e.  ~H )
38 hvsubcl 21597 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( H `  j
)  e.  ~H  /\  ( H `  k )  e.  ~H )  -> 
( ( H `  j )  -h  ( H `  k )
)  e.  ~H )
3931, 37, 38syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( H `  j )  -h  ( H `  k )
)  e.  ~H )
409adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  NN )  ->  A  C_  ~H )
41 ffvelrn 5663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( F : NN --> A  /\  j  e.  NN )  ->  ( F `  j
)  e.  A )
427, 41sylan 457 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  e.  A )
4340, 42sseldd 3181 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  e. 
~H )
4443adantrr 697 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( F `  j
)  e.  ~H )
459adantr 451 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  ->  A  C_  ~H )
467adantr 451 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  ->  F : NN --> A )
47 ffvelrn 5663 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( F : NN --> A  /\  k  e.  NN )  ->  ( F `  k
)  e.  A )
4846, 35, 47syl2anc 642 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( F `  k
)  e.  A )
4945, 48sseldd 3181 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( F `  k
)  e.  ~H )
50 hvsubcl 21597 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( F `  j
)  e.  ~H  /\  ( F `  k )  e.  ~H )  -> 
( ( F `  j )  -h  ( F `  k )
)  e.  ~H )
5144, 49, 50syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( F `  j )  -h  ( F `  k )
)  e.  ~H )
52 hvsubcl 21597 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( H `  j )  -h  ( H `  k )
)  e.  ~H  /\  ( ( F `  j )  -h  ( F `  k )
)  e.  ~H )  ->  ( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) )  e.  ~H )
5339, 51, 52syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) )  e.  ~H )
54 normcl 21704 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) )  e.  ~H  ->  ( normh `  ( ( ( H `  j )  -h  ( H `  k ) )  -h  ( ( F `  j )  -h  ( F `  k )
) ) )  e.  RR )
5553, 54syl 15 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( normh `  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) )  e.  RR )
5655sqge0d 11272 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
0  <_  ( ( normh `  ( ( ( H `  j )  -h  ( H `  k ) )  -h  ( ( F `  j )  -h  ( F `  k )
) ) ) ^
2 ) )
57 normcl 21704 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F `  j
)  -h  ( F `
 k ) )  e.  ~H  ->  ( normh `  ( ( F `
 j )  -h  ( F `  k
) ) )  e.  RR )
5851, 57syl 15 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  e.  RR )
5958resqcld 11271 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( F `  j
)  -h  ( F `
 k ) ) ) ^ 2 )  e.  RR )
6055resqcld 11271 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) ) ^ 2 )  e.  RR )
6159, 60addge01d 9360 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( 0  <_  (
( normh `  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ^ 2 )  <->  ( ( normh `  ( ( F `
 j )  -h  ( F `  k
) ) ) ^
2 )  <_  (
( ( normh `  (
( F `  j
)  -h  ( F `
 k ) ) ) ^ 2 )  +  ( ( normh `  ( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) ) ) ^ 2 ) ) ) )
6256, 61mpbid 201 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( F `  j
)  -h  ( F `
 k ) ) ) ^ 2 )  <_  ( ( (
normh `  ( ( F `
 j )  -h  ( F `  k
) ) ) ^
2 )  +  ( ( normh `  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ^ 2 ) ) )
6320adantr 451 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  ->  A  e.  SH )
6442adantrr 697 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( F `  j
)  e.  A )
65 shsubcl 21800 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  SH  /\  ( F `  j )  e.  A  /\  ( F `  k )  e.  A )  ->  (
( F `  j
)  -h  ( F `
 k ) )  e.  A )
6663, 64, 48, 65syl3anc 1182 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( F `  j )  -h  ( F `  k )
)  e.  A )
67 hvsubsub4 21639 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( H `  j )  e.  ~H  /\  ( H `  k
)  e.  ~H )  /\  ( ( F `  j )  e.  ~H  /\  ( F `  k
)  e.  ~H )
)  ->  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) )  =  ( ( ( H `
 j )  -h  ( F `  j
) )  -h  (
( H `  k
)  -h  ( F `
 k ) ) ) )
6831, 37, 44, 49, 67syl22anc 1183 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) )  =  ( ( ( H `  j
)  -h  ( F `
 j ) )  -h  ( ( H `
 k )  -h  ( F `  k
) ) ) )
69 ocsh 21862 . . . . . . . . . . . . . . . . . . 19  |-  ( A 
C_  ~H  ->  ( _|_ `  A )  e.  SH )
7045, 69syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( _|_ `  A
)  e.  SH )
71 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( n  =  j  ->  ( H `  n )  =  ( H `  j ) )
7271fveq2d 5529 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( n  =  j  ->  (
( proj  h `  A
) `  ( H `  n ) )  =  ( ( proj  h `  A ) `  ( H `  j )
) )
73 fvex 5539 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
proj  h `  A ) `
 ( H `  j ) )  e. 
_V
7472, 6, 73fvmpt 5602 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( j  e.  NN  ->  ( F `  j )  =  ( ( proj 
h `  A ) `  ( H `  j
) ) )
7574eqcomd 2288 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( j  e.  NN  ->  (
( proj  h `  A
) `  ( H `  j ) )  =  ( F `  j
) )
7675adantl 452 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  j  e.  NN )  ->  ( (
proj  h `  A ) `
 ( H `  j ) )  =  ( F `  j
) )
771adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  j  e.  NN )  ->  A  e. 
CH )
789, 69syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( _|_ `  A
)  e.  SH )
79 shless 21938 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( ( B  e.  SH  /\  ( _|_ `  A
)  e.  SH  /\  A  e.  SH )  /\  B  C_  ( _|_ `  A ) )  -> 
( B  +H  A
)  C_  ( ( _|_ `  A )  +H  A ) )
8022, 78, 20, 3, 79syl31anc 1185 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( B  +H  A
)  C_  ( ( _|_ `  A )  +H  A ) )
81 shscom 21898 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  ( B  +H  A ) )
8220, 22, 81syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( A  +H  B
)  =  ( B  +H  A ) )
83 shscom 21898 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( A  e.  SH  /\  ( _|_ `  A )  e.  SH )  -> 
( A  +H  ( _|_ `  A ) )  =  ( ( _|_ `  A )  +H  A
) )
8420, 78, 83syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( A  +H  ( _|_ `  A ) )  =  ( ( _|_ `  A )  +H  A
) )
8580, 82, 843sstr4d 3221 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( A  +H  B
)  C_  ( A  +H  ( _|_ `  A
) ) )
8685adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  j  e.  NN )  ->  ( A  +H  B )  C_  ( A  +H  ( _|_ `  A ) ) )
8786, 29sseldd 3181 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  j  e.  NN )  ->  ( H `
 j )  e.  ( A  +H  ( _|_ `  A ) ) )
88 pjpreeq 21977 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( A  e.  CH  /\  ( H `  j )  e.  ( A  +H  ( _|_ `  A ) ) )  ->  (
( ( proj  h `  A ) `  ( H `  j )
)  =  ( F `
 j )  <->  ( ( F `  j )  e.  A  /\  E. x  e.  ( _|_ `  A
) ( H `  j )  =  ( ( F `  j
)  +h  x ) ) ) )
8977, 87, 88syl2anc 642 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( ( proj  h `  A
) `  ( H `  j ) )  =  ( F `  j
)  <->  ( ( F `
 j )  e.  A  /\  E. x  e.  ( _|_ `  A
) ( H `  j )  =  ( ( F `  j
)  +h  x ) ) ) )
9076, 89mpbid 201 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( F `  j )  e.  A  /\  E. x  e.  ( _|_ `  A ) ( H `
 j )  =  ( ( F `  j )  +h  x
) ) )
9190simprd 449 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  j  e.  NN )  ->  E. x  e.  ( _|_ `  A
) ( H `  j )  =  ( ( F `  j
)  +h  x ) )
9230adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  j  e.  NN )  /\  x  e.  ( _|_ `  A
) )  ->  ( H `  j )  e.  ~H )
9343adantr 451 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  j  e.  NN )  /\  x  e.  ( _|_ `  A
) )  ->  ( F `  j )  e.  ~H )
94 shss 21789 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ( _|_ `  A )  e.  SH  ->  ( _|_ `  A )  C_  ~H )
9578, 94syl 15 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( _|_ `  A
)  C_  ~H )
9695adantr 451 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  j  e.  NN )  ->  ( _|_ `  A )  C_  ~H )
9796sselda 3180 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  j  e.  NN )  /\  x  e.  ( _|_ `  A
) )  ->  x  e.  ~H )
98 hvsubadd 21656 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( H `  j
)  e.  ~H  /\  ( F `  j )  e.  ~H  /\  x  e.  ~H )  ->  (
( ( H `  j )  -h  ( F `  j )
)  =  x  <->  ( ( F `  j )  +h  x )  =  ( H `  j ) ) )
9992, 93, 97, 98syl3anc 1182 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  j  e.  NN )  /\  x  e.  ( _|_ `  A
) )  ->  (
( ( H `  j )  -h  ( F `  j )
)  =  x  <->  ( ( F `  j )  +h  x )  =  ( H `  j ) ) )
100 eqcom 2285 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( x  =  ( ( H `
 j )  -h  ( F `  j
) )  <->  ( ( H `  j )  -h  ( F `  j
) )  =  x )
101 eqcom 2285 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( H `  j )  =  ( ( F `
 j )  +h  x )  <->  ( ( F `  j )  +h  x )  =  ( H `  j ) )
10299, 100, 1013bitr4g 279 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  j  e.  NN )  /\  x  e.  ( _|_ `  A
) )  ->  (
x  =  ( ( H `  j )  -h  ( F `  j ) )  <->  ( H `  j )  =  ( ( F `  j
)  +h  x ) ) )
103102rexbidva 2560 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  j  e.  NN )  ->  ( E. x  e.  ( _|_ `  A ) x  =  ( ( H `  j )  -h  ( F `  j )
)  <->  E. x  e.  ( _|_ `  A ) ( H `  j
)  =  ( ( F `  j )  +h  x ) ) )
10491, 103mpbird 223 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  j  e.  NN )  ->  E. x  e.  ( _|_ `  A
) x  =  ( ( H `  j
)  -h  ( F `
 j ) ) )
105 risset 2590 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( H `  j
)  -h  ( F `
 j ) )  e.  ( _|_ `  A
)  <->  E. x  e.  ( _|_ `  A ) x  =  ( ( H `  j )  -h  ( F `  j ) ) )
106104, 105sylibr 203 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  j  e.  NN )  ->  ( ( H `  j )  -h  ( F `  j ) )  e.  ( _|_ `  A
) )
107106adantrr 697 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( H `  j )  -h  ( F `  j )
)  e.  ( _|_ `  A ) )
108 eleq1 2343 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  k  ->  (
j  e.  NN  <->  k  e.  NN ) )
109108anbi2d 684 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  k  ->  (
( ph  /\  j  e.  NN )  <->  ( ph  /\  k  e.  NN ) ) )
110 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  =  k  ->  ( H `  j )  =  ( H `  k ) )
111 fveq2 5525 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( j  =  k  ->  ( F `  j )  =  ( F `  k ) )
112110, 111oveq12d 5876 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( j  =  k  ->  (
( H `  j
)  -h  ( F `
 j ) )  =  ( ( H `
 k )  -h  ( F `  k
) ) )
113112eleq1d 2349 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  =  k  ->  (
( ( H `  j )  -h  ( F `  j )
)  e.  ( _|_ `  A )  <->  ( ( H `  k )  -h  ( F `  k
) )  e.  ( _|_ `  A ) ) )
114109, 113imbi12d 311 . . . . . . . . . . . . . . . . . . . 20  |-  ( j  =  k  ->  (
( ( ph  /\  j  e.  NN )  ->  ( ( H `  j )  -h  ( F `  j )
)  e.  ( _|_ `  A ) )  <->  ( ( ph  /\  k  e.  NN )  ->  ( ( H `
 k )  -h  ( F `  k
) )  e.  ( _|_ `  A ) ) ) )
115114, 106chvarv 1953 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( H `  k )  -h  ( F `  k ) )  e.  ( _|_ `  A
) )
116115adantrl 696 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( H `  k )  -h  ( F `  k )
)  e.  ( _|_ `  A ) )
117 shsubcl 21800 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( _|_ `  A
)  e.  SH  /\  ( ( H `  j )  -h  ( F `  j )
)  e.  ( _|_ `  A )  /\  (
( H `  k
)  -h  ( F `
 k ) )  e.  ( _|_ `  A
) )  ->  (
( ( H `  j )  -h  ( F `  j )
)  -h  ( ( H `  k )  -h  ( F `  k ) ) )  e.  ( _|_ `  A
) )
11870, 107, 116, 117syl3anc 1182 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( H `
 j )  -h  ( F `  j
) )  -h  (
( H `  k
)  -h  ( F `
 k ) ) )  e.  ( _|_ `  A ) )
11968, 118eqeltrd 2357 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) )  e.  ( _|_ `  A ) )
120 shocorth 21871 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  SH  ->  (
( ( ( F `
 j )  -h  ( F `  k
) )  e.  A  /\  ( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) )  e.  ( _|_ `  A ) )  -> 
( ( ( F `
 j )  -h  ( F `  k
) )  .ih  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) )  =  0 ) )
12163, 120syl 15 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( ( F `  j )  -h  ( F `  k ) )  e.  A  /\  ( ( ( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) )  e.  ( _|_ `  A
) )  ->  (
( ( F `  j )  -h  ( F `  k )
)  .ih  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) )  =  0 ) )
12266, 119, 121mp2and 660 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( F `
 j )  -h  ( F `  k
) )  .ih  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) )  =  0 )
123 normpyth 21724 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( F `  j )  -h  ( F `  k )
)  e.  ~H  /\  ( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) )  e.  ~H )  ->  ( ( ( ( F `  j )  -h  ( F `  k ) )  .ih  ( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) ) )  =  0  ->  ( ( normh `  ( ( ( F `
 j )  -h  ( F `  k
) )  +h  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) ) ) ^ 2 )  =  ( ( ( normh `  ( ( F `  j )  -h  ( F `  k
) ) ) ^
2 )  +  ( ( normh `  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ^ 2 ) ) ) )
12451, 53, 123syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( ( F `  j )  -h  ( F `  k ) )  .ih  ( ( ( H `
 j )  -h  ( H `  k
) )  -h  (
( F `  j
)  -h  ( F `
 k ) ) ) )  =  0  ->  ( ( normh `  ( ( ( F `
 j )  -h  ( F `  k
) )  +h  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) ) ) ^ 2 )  =  ( ( ( normh `  ( ( F `  j )  -h  ( F `  k
) ) ) ^
2 )  +  ( ( normh `  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ^ 2 ) ) ) )
125122, 124mpd 14 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( ( F `  j )  -h  ( F `  k )
)  +h  ( ( ( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ) ^ 2 )  =  ( ( (
normh `  ( ( F `
 j )  -h  ( F `  k
) ) ) ^
2 )  +  ( ( normh `  ( (
( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ^ 2 ) ) )
126 hvpncan3 21621 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F `  j )  -h  ( F `  k )
)  e.  ~H  /\  ( ( H `  j )  -h  ( H `  k )
)  e.  ~H )  ->  ( ( ( F `
 j )  -h  ( F `  k
) )  +h  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) )  =  ( ( H `  j )  -h  ( H `  k ) ) )
12751, 39, 126syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( F `
 j )  -h  ( F `  k
) )  +h  (
( ( H `  j )  -h  ( H `  k )
)  -h  ( ( F `  j )  -h  ( F `  k ) ) ) )  =  ( ( H `  j )  -h  ( H `  k ) ) )
128127fveq2d 5529 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( normh `  ( (
( F `  j
)  -h  ( F `
 k ) )  +h  ( ( ( H `  j )  -h  ( H `  k ) )  -h  ( ( F `  j )  -h  ( F `  k )
) ) ) )  =  ( normh `  (
( H `  j
)  -h  ( H `
 k ) ) ) )
129128oveq1d 5873 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( ( F `  j )  -h  ( F `  k )
)  +h  ( ( ( H `  j
)  -h  ( H `
 k ) )  -h  ( ( F `
 j )  -h  ( F `  k
) ) ) ) ) ^ 2 )  =  ( ( normh `  ( ( H `  j )  -h  ( H `  k )
) ) ^ 2 ) )
130125, 129eqtr3d 2317 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( ( normh `  ( ( F `  j )  -h  ( F `  k )
) ) ^ 2 )  +  ( (
normh `  ( ( ( H `  j )  -h  ( H `  k ) )  -h  ( ( F `  j )  -h  ( F `  k )
) ) ) ^
2 ) )  =  ( ( normh `  (
( H `  j
)  -h  ( H `
 k ) ) ) ^ 2 ) )
13162, 130breqtrd 4047 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( F `  j
)  -h  ( F `
 k ) ) ) ^ 2 )  <_  ( ( normh `  ( ( H `  j )  -h  ( H `  k )
) ) ^ 2 ) )
132 normcl 21704 . . . . . . . . . . . . . 14  |-  ( ( ( H `  j
)  -h  ( H `
 k ) )  e.  ~H  ->  ( normh `  ( ( H `
 j )  -h  ( H `  k
) ) )  e.  RR )
13339, 132syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  e.  RR )
134 normge0 21705 . . . . . . . . . . . . . 14  |-  ( ( ( F `  j
)  -h  ( F `
 k ) )  e.  ~H  ->  0  <_  ( normh `  ( ( F `  j )  -h  ( F `  k
) ) ) )
13551, 134syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
0  <_  ( normh `  ( ( F `  j )  -h  ( F `  k )
) ) )
136 normge0 21705 . . . . . . . . . . . . . 14  |-  ( ( ( H `  j
)  -h  ( H `
 k ) )  e.  ~H  ->  0  <_  ( normh `  ( ( H `  j )  -h  ( H `  k
) ) ) )
13739, 136syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
0  <_  ( normh `  ( ( H `  j )  -h  ( H `  k )
) ) )
13858, 133, 135, 137le2sqd 11280 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( ( normh `  (
( F `  j
)  -h  ( F `
 k ) ) )  <_  ( normh `  ( ( H `  j )  -h  ( H `  k )
) )  <->  ( ( normh `  ( ( F `
 j )  -h  ( F `  k
) ) ) ^
2 )  <_  (
( normh `  ( ( H `  j )  -h  ( H `  k
) ) ) ^
2 ) ) )
139131, 138mpbird 223 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  NN ) )  -> 
( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  <_ 
( normh `  ( ( H `  j )  -h  ( H `  k
) ) ) )
140139adantlr 695 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  k  e.  NN )
)  ->  ( normh `  ( ( F `  j )  -h  ( F `  k )
) )  <_  ( normh `  ( ( H `
 j )  -h  ( H `  k
) ) ) )
14158adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  k  e.  NN )
)  ->  ( normh `  ( ( F `  j )  -h  ( F `  k )
) )  e.  RR )
142133adantlr 695 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  k  e.  NN )
)  ->  ( normh `  ( ( H `  j )  -h  ( H `  k )
) )  e.  RR )
143 rpre 10360 . . . . . . . . . . . 12  |-  ( x  e.  RR+  ->  x  e.  RR )
144143ad2antlr 707 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  k  e.  NN )
)  ->  x  e.  RR )
145 lelttr 8912 . . . . . . . . . . 11  |-  ( ( ( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  e.  RR  /\  ( normh `  ( ( H `  j )  -h  ( H `  k )
) )  e.  RR  /\  x  e.  RR )  ->  ( ( (
normh `  ( ( F `
 j )  -h  ( F `  k
) ) )  <_ 
( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  /\  ( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  < 
x )  ->  ( normh `  ( ( F `
 j )  -h  ( F `  k
) ) )  < 
x ) )
146141, 142, 144, 145syl3anc 1182 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  k  e.  NN )
)  ->  ( (
( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  <_ 
( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  /\  ( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  < 
x )  ->  ( normh `  ( ( F `
 j )  -h  ( F `  k
) ) )  < 
x ) )
147140, 146mpand 656 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
j  e.  NN  /\  k  e.  NN )
)  ->  ( ( normh `  ( ( H `
 j )  -h  ( H `  k
) ) )  < 
x  ->  ( normh `  ( ( F `  j )  -h  ( F `  k )
) )  <  x
) )
148147anassrs 629 . . . . . . . 8  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  NN )  ->  ( ( normh `  ( ( H `  j )  -h  ( H `  k )
) )  <  x  ->  ( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  < 
x ) )
14918, 148syldan 456 . . . . . . 7  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( ( normh `  ( ( H `  j )  -h  ( H `  k )
) )  <  x  ->  ( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  < 
x ) )
150149ralimdva 2621 . . . . . 6  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) (
normh `  ( ( H `
 j )  -h  ( H `  k
) ) )  < 
x  ->  A. k  e.  ( ZZ>= `  j )
( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  < 
x ) )
151150reximdva 2655 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( ( H `  j )  -h  ( H `  k
) ) )  < 
x  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  < 
x ) )
15215, 151mpd 14 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( normh `  ( ( F `  j )  -h  ( F `  k
) ) )  < 
x )
153152ralrimiva 2626 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( F `  j )  -h  ( F `  k )
) )  <  x
)
154 hcau 21763 . . 3  |-  ( F  e.  Cauchy 
<->  ( F : NN --> ~H  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( normh `  ( ( F `  j )  -h  ( F `  k )
) )  <  x
) )
15511, 153, 154sylanbrc 645 . 2  |-  ( ph  ->  F  e.  Cauchy )
156 ax-hcompl 21781 . 2  |-  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
157 hlimf 21817 . . . . 5  |-  ~~>v  : dom  ~~>v  --> ~H
158 ffn 5389 . . . . 5  |-  (  ~~>v  : dom  ~~>v  --> ~H  ->  ~~>v  Fn  dom  ~~>v  )
159157, 158ax-mp 8 . . . 4  |-  ~~>v  Fn  dom  ~~>v
160 fnbr 5346 . . . 4  |-  ( ( 
~~>v  Fn  dom  ~~>v  /\  F  ~~>v  x )  ->  F  e.  dom  ~~>v  )
161159, 160mpan 651 . . 3  |-  ( F 
~~>v  x  ->  F  e.  dom 
~~>v  )
162161rexlimivw 2663 . 2  |-  ( E. x  e.  ~H  F  ~~>v  x  ->  F  e.  dom  ~~>v  )
163155, 156, 1623syl 18 1  |-  ( ph  ->  F  e.  dom  ~~>v  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   E.wrex 2544    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   dom cdm 4689    Fn wfn 5250   -->wf 5251   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868   NNcn 9746   2c2 9795   ZZ>=cuz 10230   RR+crp 10354   ^cexp 11104   ~Hchil 21499    +h cva 21500    .ih csp 21502   normhcno 21503    -h cmv 21505   Cauchyccau 21506    ~~>v chli 21507   SHcsh 21508   CHcch 21509   _|_cort 21510    +H cph 21511   proj  hcpjh 21517
This theorem is referenced by:  chscllem4  22219
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817  ax-hilex 21579  ax-hfvadd 21580  ax-hvcom 21581  ax-hvass 21582  ax-hv0cl 21583  ax-hvaddid 21584  ax-hfvmul 21585  ax-hvmulid 21586  ax-hvmulass 21587  ax-hvdistr1 21588  ax-hvdistr2 21589  ax-hvmul0 21590  ax-hfi 21658  ax-his1 21661  ax-his2 21662  ax-his3 21663  ax-his4 21664  ax-hcompl 21781
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-icc 10663  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-topgen 13344  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-top 16636  df-bases 16638  df-topon 16639  df-lm 16959  df-haus 17043  df-cau 18682  df-grpo 20858  df-gid 20859  df-ginv 20860  df-gdiv 20861  df-ablo 20949  df-vc 21102  df-nv 21148  df-va 21151  df-ba 21152  df-sm 21153  df-0v 21154  df-vs 21155  df-nmcv 21156  df-ims 21157  df-hnorm 21548  df-hvsub 21551  df-hlim 21552  df-hcau 21553  df-sh 21786  df-ch 21801  df-oc 21831  df-ch0 21832  df-shs 21887  df-pjh 21974
  Copyright terms: Public domain W3C validator