HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem3 Structured version   Unicode version

Theorem chscllem3 23146
Description: Lemma for chscl 23148. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1  |-  ( ph  ->  A  e.  CH )
chscl.2  |-  ( ph  ->  B  e.  CH )
chscl.3  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
chscl.4  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
chscl.5  |-  ( ph  ->  H  ~~>v  u )
chscl.6  |-  F  =  ( n  e.  NN  |->  ( ( proj  h `  A ) `  ( H `  n )
) )
chscllem3.7  |-  ( ph  ->  N  e.  NN )
chscllem3.8  |-  ( ph  ->  C  e.  A )
chscllem3.9  |-  ( ph  ->  D  e.  B )
chscllem3.10  |-  ( ph  ->  ( H `  N
)  =  ( C  +h  D ) )
Assertion
Ref Expression
chscllem3  |-  ( ph  ->  C  =  ( F `
 N ) )
Distinct variable groups:    u, n, A    ph, n    B, n, u    n, H, u    n, N
Allowed substitution hints:    ph( u)    C( u, n)    D( u, n)    F( u, n)    N( u)

Proof of Theorem chscllem3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 chscllem3.7 . . . . . 6  |-  ( ph  ->  N  e.  NN )
2 fveq2 5731 . . . . . . . 8  |-  ( n  =  N  ->  ( H `  n )  =  ( H `  N ) )
32fveq2d 5735 . . . . . . 7  |-  ( n  =  N  ->  (
( proj  h `  A
) `  ( H `  n ) )  =  ( ( proj  h `  A ) `  ( H `  N )
) )
4 chscl.6 . . . . . . 7  |-  F  =  ( n  e.  NN  |->  ( ( proj  h `  A ) `  ( H `  n )
) )
5 fvex 5745 . . . . . . 7  |-  ( (
proj  h `  A ) `
 ( H `  N ) )  e. 
_V
63, 4, 5fvmpt 5809 . . . . . 6  |-  ( N  e.  NN  ->  ( F `  N )  =  ( ( proj 
h `  A ) `  ( H `  N
) ) )
71, 6syl 16 . . . . 5  |-  ( ph  ->  ( F `  N
)  =  ( (
proj  h `  A ) `
 ( H `  N ) ) )
87eqcomd 2443 . . . 4  |-  ( ph  ->  ( ( proj  h `  A ) `  ( H `  N )
)  =  ( F `
 N ) )
9 chscl.1 . . . . 5  |-  ( ph  ->  A  e.  CH )
10 chscl.2 . . . . . . . . 9  |-  ( ph  ->  B  e.  CH )
11 chsh 22732 . . . . . . . . 9  |-  ( B  e.  CH  ->  B  e.  SH )
1210, 11syl 16 . . . . . . . 8  |-  ( ph  ->  B  e.  SH )
13 chsh 22732 . . . . . . . . . 10  |-  ( A  e.  CH  ->  A  e.  SH )
149, 13syl 16 . . . . . . . . 9  |-  ( ph  ->  A  e.  SH )
15 shocsh 22791 . . . . . . . . 9  |-  ( A  e.  SH  ->  ( _|_ `  A )  e.  SH )
1614, 15syl 16 . . . . . . . 8  |-  ( ph  ->  ( _|_ `  A
)  e.  SH )
17 chscl.3 . . . . . . . 8  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
18 shless 22866 . . . . . . . 8  |-  ( ( ( B  e.  SH  /\  ( _|_ `  A
)  e.  SH  /\  A  e.  SH )  /\  B  C_  ( _|_ `  A ) )  -> 
( B  +H  A
)  C_  ( ( _|_ `  A )  +H  A ) )
1912, 16, 14, 17, 18syl31anc 1188 . . . . . . 7  |-  ( ph  ->  ( B  +H  A
)  C_  ( ( _|_ `  A )  +H  A ) )
20 shscom 22826 . . . . . . . 8  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  ( B  +H  A ) )
2114, 12, 20syl2anc 644 . . . . . . 7  |-  ( ph  ->  ( A  +H  B
)  =  ( B  +H  A ) )
22 shscom 22826 . . . . . . . 8  |-  ( ( A  e.  SH  /\  ( _|_ `  A )  e.  SH )  -> 
( A  +H  ( _|_ `  A ) )  =  ( ( _|_ `  A )  +H  A
) )
2314, 16, 22syl2anc 644 . . . . . . 7  |-  ( ph  ->  ( A  +H  ( _|_ `  A ) )  =  ( ( _|_ `  A )  +H  A
) )
2419, 21, 233sstr4d 3393 . . . . . 6  |-  ( ph  ->  ( A  +H  B
)  C_  ( A  +H  ( _|_ `  A
) ) )
25 chscl.4 . . . . . . 7  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
2625, 1ffvelrnd 5874 . . . . . 6  |-  ( ph  ->  ( H `  N
)  e.  ( A  +H  B ) )
2724, 26sseldd 3351 . . . . 5  |-  ( ph  ->  ( H `  N
)  e.  ( A  +H  ( _|_ `  A
) ) )
28 pjpreeq 22905 . . . . 5  |-  ( ( A  e.  CH  /\  ( H `  N )  e.  ( A  +H  ( _|_ `  A ) ) )  ->  (
( ( proj  h `  A ) `  ( H `  N )
)  =  ( F `
 N )  <->  ( ( F `  N )  e.  A  /\  E. z  e.  ( _|_ `  A
) ( H `  N )  =  ( ( F `  N
)  +h  z ) ) ) )
299, 27, 28syl2anc 644 . . . 4  |-  ( ph  ->  ( ( ( proj 
h `  A ) `  ( H `  N
) )  =  ( F `  N )  <-> 
( ( F `  N )  e.  A  /\  E. z  e.  ( _|_ `  A ) ( H `  N
)  =  ( ( F `  N )  +h  z ) ) ) )
308, 29mpbid 203 . . 3  |-  ( ph  ->  ( ( F `  N )  e.  A  /\  E. z  e.  ( _|_ `  A ) ( H `  N
)  =  ( ( F `  N )  +h  z ) ) )
3130simprd 451 . 2  |-  ( ph  ->  E. z  e.  ( _|_ `  A ) ( H `  N
)  =  ( ( F `  N )  +h  z ) )
3214adantr 453 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  A  e.  SH )
3316adantr 453 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( _|_ `  A )  e.  SH )
34 ocin 22803 . . . . . 6  |-  ( A  e.  SH  ->  ( A  i^i  ( _|_ `  A
) )  =  0H )
3514, 34syl 16 . . . . 5  |-  ( ph  ->  ( A  i^i  ( _|_ `  A ) )  =  0H )
3635adantr 453 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( A  i^i  ( _|_ `  A
) )  =  0H )
37 chscllem3.8 . . . . 5  |-  ( ph  ->  C  e.  A )
3837adantr 453 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  C  e.  A )
3917adantr 453 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  B  C_  ( _|_ `  A
) )
40 chscllem3.9 . . . . . 6  |-  ( ph  ->  D  e.  B )
4140adantr 453 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  D  e.  B )
4239, 41sseldd 3351 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  D  e.  ( _|_ `  A
) )
43 chscl.5 . . . . . . 7  |-  ( ph  ->  H  ~~>v  u )
449, 10, 17, 25, 43, 4chscllem1 23144 . . . . . 6  |-  ( ph  ->  F : NN --> A )
4544, 1ffvelrnd 5874 . . . . 5  |-  ( ph  ->  ( F `  N
)  e.  A )
4645adantr 453 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( F `  N )  e.  A )
47 simprl 734 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  z  e.  ( _|_ `  A
) )
48 chscllem3.10 . . . . . 6  |-  ( ph  ->  ( H `  N
)  =  ( C  +h  D ) )
4948adantr 453 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( H `  N )  =  ( C  +h  D ) )
50 simprr 735 . . . . 5  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( H `  N )  =  ( ( F `
 N )  +h  z ) )
5149, 50eqtr3d 2472 . . . 4  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( C  +h  D )  =  ( ( F `  N )  +h  z
) )
5232, 33, 36, 38, 42, 46, 47, 51shuni 22807 . . 3  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  ( C  =  ( F `  N )  /\  D  =  z ) )
5352simpld 447 . 2  |-  ( (
ph  /\  ( z  e.  ( _|_ `  A
)  /\  ( H `  N )  =  ( ( F `  N
)  +h  z ) ) )  ->  C  =  ( F `  N ) )
5431, 53rexlimddv 2836 1  |-  ( ph  ->  C  =  ( F `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    = wceq 1653    e. wcel 1726   E.wrex 2708    i^i cin 3321    C_ wss 3322   class class class wbr 4215    e. cmpt 4269   -->wf 5453   ` cfv 5457  (class class class)co 6084   NNcn 10005    +h cva 22428    ~~>v chli 22435   SHcsh 22436   CHcch 22437   _|_cort 22438    +H cph 22439   0Hc0h 22443   proj 
hcpjh 22445
This theorem is referenced by:  chscllem4  23147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-hilex 22507  ax-hfvadd 22508  ax-hvcom 22509  ax-hvass 22510  ax-hv0cl 22511  ax-hvaddid 22512  ax-hfvmul 22513  ax-hvmulid 22514  ax-hvmulass 22515  ax-hvdistr1 22516  ax-hvdistr2 22517  ax-hvmul0 22518  ax-hfi 22586  ax-his2 22590  ax-his3 22591  ax-his4 22592
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-id 4501  df-po 4506  df-so 4507  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-riota 6552  df-er 6908  df-en 7113  df-dom 7114  df-sdom 7115  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-grpo 21784  df-ablo 21875  df-hvsub 22479  df-sh 22714  df-ch 22729  df-oc 22759  df-ch0 22760  df-shs 22815  df-pjh 22902
  Copyright terms: Public domain W3C validator