HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chscllem4 Unicode version

Theorem chscllem4 22274
Description: Lemma for chscl 22275. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
chscl.1  |-  ( ph  ->  A  e.  CH )
chscl.2  |-  ( ph  ->  B  e.  CH )
chscl.3  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
chscl.4  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
chscl.5  |-  ( ph  ->  H  ~~>v  u )
chscl.6  |-  F  =  ( n  e.  NN  |->  ( ( proj  h `  A ) `  ( H `  n )
) )
chscl.7  |-  G  =  ( n  e.  NN  |->  ( ( proj  h `  B ) `  ( H `  n )
) )
Assertion
Ref Expression
chscllem4  |-  ( ph  ->  u  e.  ( A  +H  B ) )
Distinct variable groups:    u, n, A    ph, n    B, n, u    n, H, u
Allowed substitution hints:    ph( u)    F( u, n)    G( u, n)

Proof of Theorem chscllem4
Dummy variables  x  y  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlimf 21872 . . . . 5  |-  ~~>v  : dom  ~~>v  --> ~H
2 ffun 5429 . . . . 5  |-  (  ~~>v  : dom  ~~>v  --> ~H  ->  Fun  ~~>v  )
31, 2ax-mp 8 . . . 4  |-  Fun  ~~>v
4 chscl.5 . . . 4  |-  ( ph  ->  H  ~~>v  u )
5 funbrfv 5599 . . . 4  |-  ( Fun  ~~>v 
->  ( H  ~~>v  u  -> 
(  ~~>v  `  H )  =  u ) )
63, 4, 5mpsyl 59 . . 3  |-  ( ph  ->  (  ~~>v  `  H )  =  u )
7 chscl.4 . . . . . . 7  |-  ( ph  ->  H : NN --> ( A  +H  B ) )
87feqmptd 5613 . . . . . 6  |-  ( ph  ->  H  =  ( k  e.  NN  |->  ( H `
 k ) ) )
9 ffvelrn 5701 . . . . . . . . . 10  |-  ( ( H : NN --> ( A  +H  B )  /\  k  e.  NN )  ->  ( H `  k
)  e.  ( A  +H  B ) )
107, 9sylan 457 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  e.  ( A  +H  B
) )
11 chscl.1 . . . . . . . . . . . 12  |-  ( ph  ->  A  e.  CH )
12 chsh 21859 . . . . . . . . . . . 12  |-  ( A  e.  CH  ->  A  e.  SH )
1311, 12syl 15 . . . . . . . . . . 11  |-  ( ph  ->  A  e.  SH )
14 chscl.2 . . . . . . . . . . . 12  |-  ( ph  ->  B  e.  CH )
15 chsh 21859 . . . . . . . . . . . 12  |-  ( B  e.  CH  ->  B  e.  SH )
1614, 15syl 15 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  SH )
17 shsel 21948 . . . . . . . . . . 11  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( ( H `  k )  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  ( H `  k )  =  ( x  +h  y ) ) )
1813, 16, 17syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  ( ( H `  k )  e.  ( A  +H  B )  <->  E. x  e.  A  E. y  e.  B  ( H `  k )  =  ( x  +h  y ) ) )
1918biimpa 470 . . . . . . . . 9  |-  ( (
ph  /\  ( H `  k )  e.  ( A  +H  B ) )  ->  E. x  e.  A  E. y  e.  B  ( H `  k )  =  ( x  +h  y ) )
2010, 19syldan 456 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  E. x  e.  A  E. y  e.  B  ( H `  k )  =  ( x  +h  y ) )
21 simp3 957 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  ( H `  k )  =  ( x  +h  y ) )
22 simp1l 979 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  ph )
2322, 11syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  A  e.  CH )
2422, 14syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  B  e.  CH )
25 chscl.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  C_  ( _|_ `  A ) )
2622, 25syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  B  C_  ( _|_ `  A ) )
2722, 7syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  H : NN --> ( A  +H  B
) )
2822, 4syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  H  ~~>v  u )
29 chscl.6 . . . . . . . . . . . . 13  |-  F  =  ( n  e.  NN  |->  ( ( proj  h `  A ) `  ( H `  n )
) )
30 simp1r 980 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  k  e.  NN )
31 simp2l 981 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  x  e.  A
)
32 simp2r 982 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  y  e.  B
)
3323, 24, 26, 27, 28, 29, 30, 31, 32, 21chscllem3 22273 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  x  =  ( F `  k ) )
34 chsscon2 22136 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  CH  /\  A  e.  CH )  ->  ( B  C_  ( _|_ `  A )  <->  A  C_  ( _|_ `  B ) ) )
3514, 11, 34syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  C_  ( _|_ `  A )  <->  A  C_  ( _|_ `  B ) ) )
3625, 35mpbid 201 . . . . . . . . . . . . . 14  |-  ( ph  ->  A  C_  ( _|_ `  B ) )
3722, 36syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  A  C_  ( _|_ `  B ) )
38 shscom 21953 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( A  +H  B
)  =  ( B  +H  A ) )
3913, 16, 38syl2anc 642 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( A  +H  B
)  =  ( B  +H  A ) )
40 feq3 5414 . . . . . . . . . . . . . . . 16  |-  ( ( A  +H  B )  =  ( B  +H  A )  ->  ( H : NN --> ( A  +H  B )  <->  H : NN
--> ( B  +H  A
) ) )
4139, 40syl 15 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( H : NN --> ( A  +H  B
)  <->  H : NN --> ( B  +H  A ) ) )
427, 41mpbid 201 . . . . . . . . . . . . . 14  |-  ( ph  ->  H : NN --> ( B  +H  A ) )
4322, 42syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  H : NN --> ( B  +H  A
) )
44 chscl.7 . . . . . . . . . . . . 13  |-  G  =  ( n  e.  NN  |->  ( ( proj  h `  B ) `  ( H `  n )
) )
45 shss 21844 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  SH  ->  A  C_ 
~H )
4613, 45syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  A  C_  ~H )
4722, 46syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  A  C_  ~H )
4847, 31sseldd 3215 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  x  e.  ~H )
49 shss 21844 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  SH  ->  B  C_ 
~H )
5016, 49syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  C_  ~H )
5122, 50syl 15 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  B  C_  ~H )
5251, 32sseldd 3215 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  y  e.  ~H )
53 ax-hvcom 21636 . . . . . . . . . . . . . . 15  |-  ( ( x  e.  ~H  /\  y  e.  ~H )  ->  ( x  +h  y
)  =  ( y  +h  x ) )
5448, 52, 53syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  ( x  +h  y )  =  ( y  +h  x ) )
5521, 54eqtrd 2348 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  ( H `  k )  =  ( y  +h  x ) )
5624, 23, 37, 43, 28, 44, 30, 32, 31, 55chscllem3 22273 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  y  =  ( G `  k ) )
5733, 56oveq12d 5918 . . . . . . . . . . 11  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  ( x  +h  y )  =  ( ( F `  k
)  +h  ( G `
 k ) ) )
5821, 57eqtrd 2348 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
x  e.  A  /\  y  e.  B )  /\  ( H `  k
)  =  ( x  +h  y ) )  ->  ( H `  k )  =  ( ( F `  k
)  +h  ( G `
 k ) ) )
59583exp 1150 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( x  e.  A  /\  y  e.  B )  ->  ( ( H `  k )  =  ( x  +h  y )  ->  ( H `  k )  =  ( ( F `  k
)  +h  ( G `
 k ) ) ) ) )
6059rexlimdvv 2707 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( E. x  e.  A  E. y  e.  B  ( H `  k )  =  ( x  +h  y )  ->  ( H `  k )  =  ( ( F `
 k )  +h  ( G `  k
) ) ) )
6120, 60mpd 14 . . . . . . 7  |-  ( (
ph  /\  k  e.  NN )  ->  ( H `
 k )  =  ( ( F `  k )  +h  ( G `  k )
) )
6261mpteq2dva 4143 . . . . . 6  |-  ( ph  ->  ( k  e.  NN  |->  ( H `  k ) )  =  ( k  e.  NN  |->  ( ( F `  k )  +h  ( G `  k ) ) ) )
638, 62eqtrd 2348 . . . . 5  |-  ( ph  ->  H  =  ( k  e.  NN  |->  ( ( F `  k )  +h  ( G `  k ) ) ) )
6411, 14, 25, 7, 4, 29chscllem1 22271 . . . . . . 7  |-  ( ph  ->  F : NN --> A )
65 fss 5435 . . . . . . 7  |-  ( ( F : NN --> A  /\  A  C_  ~H )  ->  F : NN --> ~H )
6664, 46, 65syl2anc 642 . . . . . 6  |-  ( ph  ->  F : NN --> ~H )
6714, 11, 36, 42, 4, 44chscllem1 22271 . . . . . . 7  |-  ( ph  ->  G : NN --> B )
68 fss 5435 . . . . . . 7  |-  ( ( G : NN --> B  /\  B  C_  ~H )  ->  G : NN --> ~H )
6967, 50, 68syl2anc 642 . . . . . 6  |-  ( ph  ->  G : NN --> ~H )
7011, 14, 25, 7, 4, 29chscllem2 22272 . . . . . . 7  |-  ( ph  ->  F  e.  dom  ~~>v  )
71 funfvbrb 5676 . . . . . . . 8  |-  ( Fun  ~~>v 
->  ( F  e.  dom  ~~>v  <->  F  ~~>v  (  ~~>v  `  F )
) )
723, 71ax-mp 8 . . . . . . 7  |-  ( F  e.  dom  ~~>v  <->  F  ~~>v  (  ~~>v  `  F ) )
7370, 72sylib 188 . . . . . 6  |-  ( ph  ->  F  ~~>v  (  ~~>v  `  F
) )
7414, 11, 36, 42, 4, 44chscllem2 22272 . . . . . . 7  |-  ( ph  ->  G  e.  dom  ~~>v  )
75 funfvbrb 5676 . . . . . . . 8  |-  ( Fun  ~~>v 
->  ( G  e.  dom  ~~>v  <->  G  ~~>v  (  ~~>v  `  G )
) )
763, 75ax-mp 8 . . . . . . 7  |-  ( G  e.  dom  ~~>v  <->  G  ~~>v  (  ~~>v  `  G ) )
7774, 76sylib 188 . . . . . 6  |-  ( ph  ->  G  ~~>v  (  ~~>v  `  G
) )
78 eqid 2316 . . . . . 6  |-  ( k  e.  NN  |->  ( ( F `  k )  +h  ( G `  k ) ) )  =  ( k  e.  NN  |->  ( ( F `
 k )  +h  ( G `  k
) ) )
7966, 69, 73, 77, 78hlimadd 21827 . . . . 5  |-  ( ph  ->  ( k  e.  NN  |->  ( ( F `  k )  +h  ( G `  k )
) )  ~~>v  ( ( 
~~>v  `  F )  +h  (  ~~>v  `  G )
) )
8063, 79eqbrtrd 4080 . . . 4  |-  ( ph  ->  H  ~~>v  ( (  ~~>v  `  F )  +h  (  ~~>v 
`  G ) ) )
81 funbrfv 5599 . . . 4  |-  ( Fun  ~~>v 
->  ( H  ~~>v  ( ( 
~~>v  `  F )  +h  (  ~~>v  `  G )
)  ->  (  ~~>v  `  H )  =  ( (  ~~>v  `  F )  +h  (  ~~>v  `  G
) ) ) )
823, 80, 81mpsyl 59 . . 3  |-  ( ph  ->  (  ~~>v  `  H )  =  ( (  ~~>v  `  F )  +h  (  ~~>v 
`  G ) ) )
836, 82eqtr3d 2350 . 2  |-  ( ph  ->  u  =  ( ( 
~~>v  `  F )  +h  (  ~~>v  `  G )
) )
84 fvex 5577 . . . . 5  |-  (  ~~>v  `  F )  e.  _V
8584chlimi 21869 . . . 4  |-  ( ( A  e.  CH  /\  F : NN --> A  /\  F  ~~>v  (  ~~>v  `  F
) )  ->  (  ~~>v 
`  F )  e.  A )
8611, 64, 73, 85syl3anc 1182 . . 3  |-  ( ph  ->  (  ~~>v  `  F )  e.  A )
87 fvex 5577 . . . . 5  |-  (  ~~>v  `  G )  e.  _V
8887chlimi 21869 . . . 4  |-  ( ( B  e.  CH  /\  G : NN --> B  /\  G  ~~>v  (  ~~>v  `  G
) )  ->  (  ~~>v 
`  G )  e.  B )
8914, 67, 77, 88syl3anc 1182 . . 3  |-  ( ph  ->  (  ~~>v  `  G )  e.  B )
90 shsva 21954 . . . 4  |-  ( ( A  e.  SH  /\  B  e.  SH )  ->  ( ( (  ~~>v  `  F )  e.  A  /\  (  ~~>v  `  G
)  e.  B )  ->  ( (  ~~>v  `  F )  +h  (  ~~>v 
`  G ) )  e.  ( A  +H  B ) ) )
9113, 16, 90syl2anc 642 . . 3  |-  ( ph  ->  ( ( (  ~~>v  `  F )  e.  A  /\  (  ~~>v  `  G
)  e.  B )  ->  ( (  ~~>v  `  F )  +h  (  ~~>v 
`  G ) )  e.  ( A  +H  B ) ) )
9286, 89, 91mp2and 660 . 2  |-  ( ph  ->  ( (  ~~>v  `  F
)  +h  (  ~~>v  `  G ) )  e.  ( A  +H  B
) )
9383, 92eqeltrd 2390 1  |-  ( ph  ->  u  e.  ( A  +H  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1633    e. wcel 1701   E.wrex 2578    C_ wss 3186   class class class wbr 4060    e. cmpt 4114   dom cdm 4726   Fun wfun 5286   -->wf 5288   ` cfv 5292  (class class class)co 5900   NNcn 9791   ~Hchil 21554    +h cva 21555    ~~>v chli 21562   SHcsh 21563   CHcch 21564   _|_cort 21565    +H cph 21566   proj 
hcpjh 21572
This theorem is referenced by:  chscl  22275
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-rep 4168  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549  ax-inf2 7387  ax-cnex 8838  ax-resscn 8839  ax-1cn 8840  ax-icn 8841  ax-addcl 8842  ax-addrcl 8843  ax-mulcl 8844  ax-mulrcl 8845  ax-mulcom 8846  ax-addass 8847  ax-mulass 8848  ax-distr 8849  ax-i2m1 8850  ax-1ne0 8851  ax-1rid 8852  ax-rnegex 8853  ax-rrecex 8854  ax-cnre 8855  ax-pre-lttri 8856  ax-pre-lttrn 8857  ax-pre-ltadd 8858  ax-pre-mulgt0 8859  ax-pre-sup 8860  ax-addf 8861  ax-mulf 8862  ax-hilex 21634  ax-hfvadd 21635  ax-hvcom 21636  ax-hvass 21637  ax-hv0cl 21638  ax-hvaddid 21639  ax-hfvmul 21640  ax-hvmulid 21641  ax-hvmulass 21642  ax-hvdistr1 21643  ax-hvdistr2 21644  ax-hvmul0 21645  ax-hfi 21713  ax-his1 21716  ax-his2 21717  ax-his3 21718  ax-his4 21719  ax-hcompl 21836
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-nel 2482  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-pss 3202  df-nul 3490  df-if 3600  df-pw 3661  df-sn 3680  df-pr 3681  df-tp 3682  df-op 3683  df-uni 3865  df-int 3900  df-iun 3944  df-iin 3945  df-br 4061  df-opab 4115  df-mpt 4116  df-tr 4151  df-eprel 4342  df-id 4346  df-po 4351  df-so 4352  df-fr 4389  df-se 4390  df-we 4391  df-ord 4432  df-on 4433  df-lim 4434  df-suc 4435  df-om 4694  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-res 4738  df-ima 4739  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-f1 5297  df-fo 5298  df-f1o 5299  df-fv 5300  df-isom 5301  df-ov 5903  df-oprab 5904  df-mpt2 5905  df-of 6120  df-1st 6164  df-2nd 6165  df-riota 6346  df-recs 6430  df-rdg 6465  df-1o 6521  df-2o 6522  df-oadd 6525  df-er 6702  df-map 6817  df-pm 6818  df-ixp 6861  df-en 6907  df-dom 6908  df-sdom 6909  df-fin 6910  df-fi 7210  df-sup 7239  df-oi 7270  df-card 7617  df-cda 7839  df-pnf 8914  df-mnf 8915  df-xr 8916  df-ltxr 8917  df-le 8918  df-sub 9084  df-neg 9085  df-div 9469  df-nn 9792  df-2 9849  df-3 9850  df-4 9851  df-5 9852  df-6 9853  df-7 9854  df-8 9855  df-9 9856  df-10 9857  df-n0 10013  df-z 10072  df-dec 10172  df-uz 10278  df-q 10364  df-rp 10402  df-xneg 10499  df-xadd 10500  df-xmul 10501  df-icc 10710  df-fz 10830  df-fzo 10918  df-seq 11094  df-exp 11152  df-hash 11385  df-cj 11631  df-re 11632  df-im 11633  df-sqr 11767  df-abs 11768  df-struct 13197  df-ndx 13198  df-slot 13199  df-base 13200  df-sets 13201  df-ress 13202  df-plusg 13268  df-mulr 13269  df-sca 13271  df-vsca 13272  df-tset 13274  df-ple 13275  df-ds 13277  df-hom 13279  df-cco 13280  df-rest 13376  df-topn 13377  df-topgen 13393  df-pt 13394  df-prds 13397  df-xrs 13452  df-0g 13453  df-gsum 13454  df-qtop 13459  df-imas 13460  df-xps 13462  df-mre 13537  df-mrc 13538  df-acs 13540  df-mnd 14416  df-submnd 14465  df-mulg 14541  df-cntz 14842  df-cmn 15140  df-xmet 16425  df-met 16426  df-bl 16427  df-mopn 16428  df-top 16692  df-bases 16694  df-topon 16695  df-topsp 16696  df-cn 17013  df-cnp 17014  df-lm 17015  df-haus 17099  df-tx 17313  df-hmeo 17502  df-xms 17937  df-tms 17939  df-cau 18735  df-grpo 20911  df-gid 20912  df-ginv 20913  df-gdiv 20914  df-ablo 21002  df-vc 21157  df-nv 21203  df-va 21206  df-ba 21207  df-sm 21208  df-0v 21209  df-vs 21210  df-nmcv 21211  df-ims 21212  df-hnorm 21603  df-hba 21604  df-hvsub 21606  df-hlim 21607  df-hcau 21608  df-sh 21841  df-ch 21856  df-oc 21886  df-ch0 21887  df-shs 21942  df-pjh 22029
  Copyright terms: Public domain W3C validator