HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  chsssh Unicode version

Theorem chsssh 22577
Description: Closed subspaces are subspaces in a Hilbert space. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
chsssh  |-  CH  C_  SH

Proof of Theorem chsssh
StepHypRef Expression
1 chsh 22576 . 2  |-  ( x  e.  CH  ->  x  e.  SH )
21ssriv 3296 1  |-  CH  C_  SH
Colors of variables: wff set class
Syntax hints:    C_ wss 3264   SHcsh 22280   CHcch 22281
This theorem is referenced by:  chex  22578  chsspwh  22598  chintcli  22682  shatomistici  23713
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-rex 2656  df-rab 2659  df-v 2902  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-br 4155  df-opab 4209  df-xp 4825  df-cnv 4827  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fv 5403  df-ov 6024  df-ch 22573
  Copyright terms: Public domain W3C validator