MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cht1 Structured version   Unicode version

Theorem cht1 20948
Description: The Chebyshev function at  1. (Contributed by Mario Carneiro, 22-Sep-2014.)
Assertion
Ref Expression
cht1  |-  ( theta `  1 )  =  0

Proof of Theorem cht1
StepHypRef Expression
1 1re 9090 . . 3  |-  1  e.  RR
2 chtval 20893 . . 3  |-  ( 1  e.  RR  ->  ( theta `  1 )  = 
sum_ p  e.  (
( 0 [,] 1
)  i^i  Prime ) ( log `  p ) )
31, 2ax-mp 8 . 2  |-  ( theta `  1 )  = 
sum_ p  e.  (
( 0 [,] 1
)  i^i  Prime ) ( log `  p )
4 ppisval 20886 . . . . 5  |-  ( 1  e.  RR  ->  (
( 0 [,] 1
)  i^i  Prime )  =  ( ( 2 ... ( |_ `  1
) )  i^i  Prime ) )
51, 4ax-mp 8 . . . 4  |-  ( ( 0 [,] 1 )  i^i  Prime )  =  ( ( 2 ... ( |_ `  1 ) )  i^i  Prime )
6 1z 10311 . . . . . . . . 9  |-  1  e.  ZZ
7 flid 11216 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  ( |_ `  1 )  =  1 )
86, 7ax-mp 8 . . . . . . . 8  |-  ( |_
`  1 )  =  1
98oveq2i 6092 . . . . . . 7  |-  ( 2 ... ( |_ ` 
1 ) )  =  ( 2 ... 1
)
10 1lt2 10142 . . . . . . . 8  |-  1  <  2
11 2z 10312 . . . . . . . . 9  |-  2  e.  ZZ
12 fzn 11071 . . . . . . . . 9  |-  ( ( 2  e.  ZZ  /\  1  e.  ZZ )  ->  ( 1  <  2  <->  ( 2 ... 1 )  =  (/) ) )
1311, 6, 12mp2an 654 . . . . . . . 8  |-  ( 1  <  2  <->  ( 2 ... 1 )  =  (/) )
1410, 13mpbi 200 . . . . . . 7  |-  ( 2 ... 1 )  =  (/)
159, 14eqtri 2456 . . . . . 6  |-  ( 2 ... ( |_ ` 
1 ) )  =  (/)
1615ineq1i 3538 . . . . 5  |-  ( ( 2 ... ( |_
`  1 ) )  i^i  Prime )  =  (
(/)  i^i  Prime )
17 incom 3533 . . . . 5  |-  ( (/)  i^i 
Prime )  =  ( Prime  i^i  (/) )
18 in0 3653 . . . . 5  |-  ( Prime  i^i  (/) )  =  (/)
1916, 17, 183eqtri 2460 . . . 4  |-  ( ( 2 ... ( |_
`  1 ) )  i^i  Prime )  =  (/)
205, 19eqtri 2456 . . 3  |-  ( ( 0 [,] 1 )  i^i  Prime )  =  (/)
2120sumeq1i 12492 . 2  |-  sum_ p  e.  ( ( 0 [,] 1 )  i^i  Prime ) ( log `  p
)  =  sum_ p  e.  (/)  ( log `  p
)
22 sum0 12515 . 2  |-  sum_ p  e.  (/)  ( log `  p
)  =  0
233, 21, 223eqtri 2460 1  |-  ( theta `  1 )  =  0
Colors of variables: wff set class
Syntax hints:    <-> wb 177    = wceq 1652    e. wcel 1725    i^i cin 3319   (/)c0 3628   class class class wbr 4212   ` cfv 5454  (class class class)co 6081   RRcr 8989   0cc0 8990   1c1 8991    < clt 9120   2c2 10049   ZZcz 10282   [,]cicc 10919   ...cfz 11043   |_cfl 11201   sum_csu 12479   Primecprime 13079   logclog 20452   thetaccht 20873
This theorem is referenced by:  cht2  20955
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-inf2 7596  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-int 4051  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-se 4542  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-1o 6724  df-2o 6725  df-oadd 6728  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-fin 7113  df-sup 7446  df-oi 7479  df-card 7826  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-icc 10923  df-fz 11044  df-fzo 11136  df-fl 11202  df-seq 11324  df-exp 11383  df-hash 11619  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282  df-sum 12480  df-dvds 12853  df-prm 13080  df-cht 20879
  Copyright terms: Public domain W3C validator