MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chtval Structured version   Unicode version

Theorem chtval 20924
Description: Value of the Chebyshev function. (Contributed by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
chtval  |-  ( A  e.  RR  ->  ( theta `  A )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) ( log `  p ) )
Distinct variable group:    A, p

Proof of Theorem chtval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 oveq2 6118 . . . 4  |-  ( x  =  A  ->  (
0 [,] x )  =  ( 0 [,] A ) )
21ineq1d 3527 . . 3  |-  ( x  =  A  ->  (
( 0 [,] x
)  i^i  Prime )  =  ( ( 0 [,] A )  i^i  Prime ) )
32sumeq1d 12526 . 2  |-  ( x  =  A  ->  sum_ p  e.  ( ( 0 [,] x )  i^i  Prime ) ( log `  p
)  =  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( log `  p
) )
4 df-cht 20910 . 2  |-  theta  =  ( x  e.  RR  |->  sum_
p  e.  ( ( 0 [,] x )  i^i  Prime ) ( log `  p ) )
5 sumex 12512 . 2  |-  sum_ p  e.  ( ( 0 [,] A )  i^i  Prime ) ( log `  p
)  e.  _V
63, 4, 5fvmpt 5835 1  |-  ( A  e.  RR  ->  ( theta `  A )  = 
sum_ p  e.  (
( 0 [,] A
)  i^i  Prime ) ( log `  p ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1727    i^i cin 3305   ` cfv 5483  (class class class)co 6110   RRcr 9020   0cc0 9021   [,]cicc 10950   sum_csu 12510   Primecprime 13110   logclog 20483   thetaccht 20904
This theorem is referenced by:  efchtcl  20925  chtge0  20926  chtfl  20963  chtprm  20967  chtnprm  20968  chtwordi  20970  chtdif  20972  cht1  20979  prmorcht  20992  chtlepsi  21021  chtleppi  21025  chpchtsum  21034  chpub  21035  chtppilimlem1  21198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pr 4432
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-id 4527  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-recs 6662  df-rdg 6697  df-seq 11355  df-sum 12511  df-cht 20910
  Copyright terms: Public domain W3C validator