MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidffn Unicode version

Theorem cidffn 13580
Description: The identity arrow construction is a function on categories. (Contributed by Mario Carneiro, 17-Jan-2017.)
Assertion
Ref Expression
cidffn  |-  Id  Fn  Cat

Proof of Theorem cidffn
Dummy variables  b 
c  f  g  h  o  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 5539 . . 3  |-  ( Base `  c )  e.  _V
2 fvex 5539 . . . 4  |-  (  Hom  `  c )  e.  _V
3 fvex 5539 . . . . 5  |-  (comp `  c )  e.  _V
4 vex 2791 . . . . . 6  |-  b  e. 
_V
54mptex 5746 . . . . 5  |-  ( x  e.  b  |->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y
h x ) ( g ( <. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f (
<. x ,  x >. o y ) g )  =  f ) ) )  e.  _V
63, 5csbex 3092 . . . 4  |-  [_ (comp `  c )  /  o ]_ ( x  e.  b 
|->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  e. 
_V
72, 6csbex 3092 . . 3  |-  [_ (  Hom  `  c )  /  h ]_ [_ (comp `  c )  /  o ]_ ( x  e.  b 
|->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  e. 
_V
81, 7csbex 3092 . 2  |-  [_ ( Base `  c )  / 
b ]_ [_ (  Hom  `  c )  /  h ]_ [_ (comp `  c
)  /  o ]_ ( x  e.  b  |->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  e. 
_V
9 df-cid 13571 . 2  |-  Id  =  ( c  e.  Cat  |->  [_ ( Base `  c
)  /  b ]_ [_ (  Hom  `  c
)  /  h ]_ [_ (comp `  c )  /  o ]_ (
x  e.  b  |->  (
iota_ g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) ) )
108, 9fnmpti 5372 1  |-  Id  Fn  Cat
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1623   A.wral 2543   [_csb 3081   <.cop 3643    e. cmpt 4077    Fn wfn 5250   ` cfv 5255  (class class class)co 5858   iota_crio 6297   Basecbs 13148    Hom chom 13219  compcco 13220   Catccat 13566   Idccid 13567
This theorem is referenced by:  cidpropd  13613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-cid 13571
  Copyright terms: Public domain W3C validator