MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidfval Unicode version

Theorem cidfval 13594
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cidfval.b  |-  B  =  ( Base `  C
)
cidfval.h  |-  H  =  (  Hom  `  C
)
cidfval.o  |-  .x.  =  (comp `  C )
cidfval.c  |-  ( ph  ->  C  e.  Cat )
cidfval.i  |-  .1.  =  ( Id `  C )
Assertion
Ref Expression
cidfval  |-  ( ph  ->  .1.  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
Distinct variable groups:    f, g, x, y, B    C, f,
g, x, y    .x. , f,
g, x, y    f, H, g, x, y    ph, f,
g, x, y
Allowed substitution hints:    .1. ( x, y, f, g)

Proof of Theorem cidfval
Dummy variables  b 
c  h  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cidfval.i . 2  |-  .1.  =  ( Id `  C )
2 cidfval.c . . 3  |-  ( ph  ->  C  e.  Cat )
3 fvex 5555 . . . . . 6  |-  ( Base `  c )  e.  _V
43a1i 10 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  e. 
_V )
5 fveq2 5541 . . . . . 6  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
6 cidfval.b . . . . . 6  |-  B  =  ( Base `  C
)
75, 6syl6eqr 2346 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  =  B )
8 fvex 5555 . . . . . . 7  |-  (  Hom  `  c )  e.  _V
98a1i 10 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  (  Hom  `  c
)  e.  _V )
10 simpl 443 . . . . . . . 8  |-  ( ( c  =  C  /\  b  =  B )  ->  c  =  C )
1110fveq2d 5545 . . . . . . 7  |-  ( ( c  =  C  /\  b  =  B )  ->  (  Hom  `  c
)  =  (  Hom  `  C ) )
12 cidfval.h . . . . . . 7  |-  H  =  (  Hom  `  C
)
1311, 12syl6eqr 2346 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  (  Hom  `  c
)  =  H )
14 fvex 5555 . . . . . . . 8  |-  (comp `  c )  e.  _V
1514a1i 10 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  e.  _V )
16 simpll 730 . . . . . . . . 9  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  c  =  C )
1716fveq2d 5545 . . . . . . . 8  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  (comp `  C ) )
18 cidfval.o . . . . . . . 8  |-  .x.  =  (comp `  C )
1917, 18syl6eqr 2346 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  .x.  )
20 simpllr 735 . . . . . . . 8  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  b  =  B )
21 simplr 731 . . . . . . . . . 10  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  h  =  H )
2221oveqd 5891 . . . . . . . . 9  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
x h x )  =  ( x H x ) )
2321oveqd 5891 . . . . . . . . . . . 12  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
y h x )  =  ( y H x ) )
24 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  o  =  .x.  )
2524oveqd 5891 . . . . . . . . . . . . . 14  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( <. y ,  x >. o x )  =  (
<. y ,  x >.  .x.  x ) )
2625oveqd 5891 . . . . . . . . . . . . 13  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
g ( <. y ,  x >. o x ) f )  =  ( g ( <. y ,  x >.  .x.  x ) f ) )
2726eqeq1d 2304 . . . . . . . . . . . 12  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
( g ( <.
y ,  x >. o x ) f )  =  f  <->  ( g
( <. y ,  x >.  .x.  x ) f )  =  f ) )
2823, 27raleqbidv 2761 . . . . . . . . . . 11  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( A. f  e.  (
y h x ) ( g ( <.
y ,  x >. o x ) f )  =  f  <->  A. f  e.  ( y H x ) ( g (
<. y ,  x >.  .x.  x ) f )  =  f ) )
2921oveqd 5891 . . . . . . . . . . . 12  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
x h y )  =  ( x H y ) )
3024oveqd 5891 . . . . . . . . . . . . . 14  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( <. x ,  x >. o y )  =  (
<. x ,  x >.  .x.  y ) )
3130oveqd 5891 . . . . . . . . . . . . 13  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
f ( <. x ,  x >. o y ) g )  =  ( f ( <. x ,  x >.  .x.  y ) g ) )
3231eqeq1d 2304 . . . . . . . . . . . 12  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
( f ( <.
x ,  x >. o y ) g )  =  f  <->  ( f
( <. x ,  x >.  .x.  y ) g )  =  f ) )
3329, 32raleqbidv 2761 . . . . . . . . . . 11  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( A. f  e.  (
x h y ) ( f ( <.
x ,  x >. o y ) g )  =  f  <->  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) )
3428, 33anbi12d 691 . . . . . . . . . 10  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  <->  ( A. f  e.  ( y H x ) ( g (
<. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) )
3520, 34raleqbidv 2761 . . . . . . . . 9  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( A. y  e.  b 
( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  <->  A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) )
3622, 35riotaeqbidv 6323 . . . . . . . 8  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  (
y h x ) ( g ( <.
y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) )  =  (
iota_ g  e.  (
x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) )
3720, 36mpteq12dv 4114 . . . . . . 7  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
x  e.  b  |->  (
iota_ g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
3815, 19, 37csbied2 3137 . . . . . 6  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  [_ (comp `  c )  /  o ]_ ( x  e.  b 
|->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
399, 13, 38csbied2 3137 . . . . 5  |-  ( ( c  =  C  /\  b  =  B )  ->  [_ (  Hom  `  c
)  /  h ]_ [_ (comp `  c )  /  o ]_ (
x  e.  b  |->  (
iota_ g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
404, 7, 39csbied2 3137 . . . 4  |-  ( c  =  C  ->  [_ ( Base `  c )  / 
b ]_ [_ (  Hom  `  c )  /  h ]_ [_ (comp `  c
)  /  o ]_ ( x  e.  b  |->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
41 df-cid 13587 . . . 4  |-  Id  =  ( c  e.  Cat  |->  [_ ( Base `  c
)  /  b ]_ [_ (  Hom  `  c
)  /  h ]_ [_ (comp `  c )  /  o ]_ (
x  e.  b  |->  (
iota_ g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) ) )
42 fvex 5555 . . . . . 6  |-  ( Base `  C )  e.  _V
436, 42eqeltri 2366 . . . . 5  |-  B  e. 
_V
4443mptex 5762 . . . 4  |-  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) ) )  e.  _V
4540, 41, 44fvmpt 5618 . . 3  |-  ( C  e.  Cat  ->  ( Id `  C )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
462, 45syl 15 . 2  |-  ( ph  ->  ( Id `  C
)  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
471, 46syl5eq 2340 1  |-  ( ph  ->  .1.  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696   A.wral 2556   _Vcvv 2801   [_csb 3094   <.cop 3656    e. cmpt 4093   ` cfv 5271  (class class class)co 5874   iota_crio 6313   Basecbs 13164    Hom chom 13235  compcco 13236   Catccat 13582   Idccid 13583
This theorem is referenced by:  cidval  13595  cidfn  13597  catidd  13598  cidpropd  13629
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-riota 6320  df-cid 13587
  Copyright terms: Public domain W3C validator