MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidfval Unicode version

Theorem cidfval 13578
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cidfval.b  |-  B  =  ( Base `  C
)
cidfval.h  |-  H  =  (  Hom  `  C
)
cidfval.o  |-  .x.  =  (comp `  C )
cidfval.c  |-  ( ph  ->  C  e.  Cat )
cidfval.i  |-  .1.  =  ( Id `  C )
Assertion
Ref Expression
cidfval  |-  ( ph  ->  .1.  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
Distinct variable groups:    f, g, x, y, B    C, f,
g, x, y    .x. , f,
g, x, y    f, H, g, x, y    ph, f,
g, x, y
Allowed substitution hints:    .1. ( x, y, f, g)

Proof of Theorem cidfval
Dummy variables  b 
c  h  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cidfval.i . 2  |-  .1.  =  ( Id `  C )
2 cidfval.c . . 3  |-  ( ph  ->  C  e.  Cat )
3 fvex 5539 . . . . . 6  |-  ( Base `  c )  e.  _V
43a1i 10 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  e. 
_V )
5 fveq2 5525 . . . . . 6  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
6 cidfval.b . . . . . 6  |-  B  =  ( Base `  C
)
75, 6syl6eqr 2333 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  =  B )
8 fvex 5539 . . . . . . 7  |-  (  Hom  `  c )  e.  _V
98a1i 10 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  (  Hom  `  c
)  e.  _V )
10 simpl 443 . . . . . . . 8  |-  ( ( c  =  C  /\  b  =  B )  ->  c  =  C )
1110fveq2d 5529 . . . . . . 7  |-  ( ( c  =  C  /\  b  =  B )  ->  (  Hom  `  c
)  =  (  Hom  `  C ) )
12 cidfval.h . . . . . . 7  |-  H  =  (  Hom  `  C
)
1311, 12syl6eqr 2333 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  (  Hom  `  c
)  =  H )
14 fvex 5539 . . . . . . . 8  |-  (comp `  c )  e.  _V
1514a1i 10 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  e.  _V )
16 simpll 730 . . . . . . . . 9  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  c  =  C )
1716fveq2d 5529 . . . . . . . 8  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  (comp `  C ) )
18 cidfval.o . . . . . . . 8  |-  .x.  =  (comp `  C )
1917, 18syl6eqr 2333 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  .x.  )
20 simpllr 735 . . . . . . . 8  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  b  =  B )
21 simplr 731 . . . . . . . . . 10  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  h  =  H )
2221oveqd 5875 . . . . . . . . 9  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
x h x )  =  ( x H x ) )
2321oveqd 5875 . . . . . . . . . . . 12  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
y h x )  =  ( y H x ) )
24 simpr 447 . . . . . . . . . . . . . . 15  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  o  =  .x.  )
2524oveqd 5875 . . . . . . . . . . . . . 14  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( <. y ,  x >. o x )  =  (
<. y ,  x >.  .x.  x ) )
2625oveqd 5875 . . . . . . . . . . . . 13  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
g ( <. y ,  x >. o x ) f )  =  ( g ( <. y ,  x >.  .x.  x ) f ) )
2726eqeq1d 2291 . . . . . . . . . . . 12  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
( g ( <.
y ,  x >. o x ) f )  =  f  <->  ( g
( <. y ,  x >.  .x.  x ) f )  =  f ) )
2823, 27raleqbidv 2748 . . . . . . . . . . 11  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( A. f  e.  (
y h x ) ( g ( <.
y ,  x >. o x ) f )  =  f  <->  A. f  e.  ( y H x ) ( g (
<. y ,  x >.  .x.  x ) f )  =  f ) )
2921oveqd 5875 . . . . . . . . . . . 12  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
x h y )  =  ( x H y ) )
3024oveqd 5875 . . . . . . . . . . . . . 14  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( <. x ,  x >. o y )  =  (
<. x ,  x >.  .x.  y ) )
3130oveqd 5875 . . . . . . . . . . . . 13  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
f ( <. x ,  x >. o y ) g )  =  ( f ( <. x ,  x >.  .x.  y ) g ) )
3231eqeq1d 2291 . . . . . . . . . . . 12  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
( f ( <.
x ,  x >. o y ) g )  =  f  <->  ( f
( <. x ,  x >.  .x.  y ) g )  =  f ) )
3329, 32raleqbidv 2748 . . . . . . . . . . 11  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( A. f  e.  (
x h y ) ( f ( <.
x ,  x >. o y ) g )  =  f  <->  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) )
3428, 33anbi12d 691 . . . . . . . . . 10  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  <->  ( A. f  e.  ( y H x ) ( g (
<. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) )
3520, 34raleqbidv 2748 . . . . . . . . 9  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( A. y  e.  b 
( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  <->  A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) )
3622, 35riotaeqbidv 6307 . . . . . . . 8  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  (
y h x ) ( g ( <.
y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) )  =  (
iota_ g  e.  (
x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) )
3720, 36mpteq12dv 4098 . . . . . . 7  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
x  e.  b  |->  (
iota_ g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
3815, 19, 37csbied2 3124 . . . . . 6  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  [_ (comp `  c )  /  o ]_ ( x  e.  b 
|->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
399, 13, 38csbied2 3124 . . . . 5  |-  ( ( c  =  C  /\  b  =  B )  ->  [_ (  Hom  `  c
)  /  h ]_ [_ (comp `  c )  /  o ]_ (
x  e.  b  |->  (
iota_ g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
404, 7, 39csbied2 3124 . . . 4  |-  ( c  =  C  ->  [_ ( Base `  c )  / 
b ]_ [_ (  Hom  `  c )  /  h ]_ [_ (comp `  c
)  /  o ]_ ( x  e.  b  |->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
41 df-cid 13571 . . . 4  |-  Id  =  ( c  e.  Cat  |->  [_ ( Base `  c
)  /  b ]_ [_ (  Hom  `  c
)  /  h ]_ [_ (comp `  c )  /  o ]_ (
x  e.  b  |->  (
iota_ g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) ) )
42 fvex 5539 . . . . . 6  |-  ( Base `  C )  e.  _V
436, 42eqeltri 2353 . . . . 5  |-  B  e. 
_V
4443mptex 5746 . . . 4  |-  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) ) )  e.  _V
4540, 41, 44fvmpt 5602 . . 3  |-  ( C  e.  Cat  ->  ( Id `  C )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
462, 45syl 15 . 2  |-  ( ph  ->  ( Id `  C
)  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
471, 46syl5eq 2327 1  |-  ( ph  ->  .1.  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543   _Vcvv 2788   [_csb 3081   <.cop 3643    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   iota_crio 6297   Basecbs 13148    Hom chom 13219  compcco 13220   Catccat 13566   Idccid 13567
This theorem is referenced by:  cidval  13579  cidfn  13581  catidd  13582  cidpropd  13613
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-riota 6304  df-cid 13571
  Copyright terms: Public domain W3C validator