MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cidfval Structured version   Unicode version

Theorem cidfval 13893
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
cidfval.b  |-  B  =  ( Base `  C
)
cidfval.h  |-  H  =  (  Hom  `  C
)
cidfval.o  |-  .x.  =  (comp `  C )
cidfval.c  |-  ( ph  ->  C  e.  Cat )
cidfval.i  |-  .1.  =  ( Id `  C )
Assertion
Ref Expression
cidfval  |-  ( ph  ->  .1.  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
Distinct variable groups:    f, g, x, y, B    C, f,
g, x, y    .x. , f,
g, x, y    f, H, g, x, y    ph, f,
g, x, y
Allowed substitution hints:    .1. ( x, y, f, g)

Proof of Theorem cidfval
Dummy variables  b 
c  h  o are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cidfval.i . 2  |-  .1.  =  ( Id `  C )
2 cidfval.c . . 3  |-  ( ph  ->  C  e.  Cat )
3 fvex 5734 . . . . . 6  |-  ( Base `  c )  e.  _V
43a1i 11 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  e. 
_V )
5 fveq2 5720 . . . . . 6  |-  ( c  =  C  ->  ( Base `  c )  =  ( Base `  C
) )
6 cidfval.b . . . . . 6  |-  B  =  ( Base `  C
)
75, 6syl6eqr 2485 . . . . 5  |-  ( c  =  C  ->  ( Base `  c )  =  B )
8 fvex 5734 . . . . . . 7  |-  (  Hom  `  c )  e.  _V
98a1i 11 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  (  Hom  `  c
)  e.  _V )
10 simpl 444 . . . . . . . 8  |-  ( ( c  =  C  /\  b  =  B )  ->  c  =  C )
1110fveq2d 5724 . . . . . . 7  |-  ( ( c  =  C  /\  b  =  B )  ->  (  Hom  `  c
)  =  (  Hom  `  C ) )
12 cidfval.h . . . . . . 7  |-  H  =  (  Hom  `  C
)
1311, 12syl6eqr 2485 . . . . . 6  |-  ( ( c  =  C  /\  b  =  B )  ->  (  Hom  `  c
)  =  H )
14 fvex 5734 . . . . . . . 8  |-  (comp `  c )  e.  _V
1514a1i 11 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  e.  _V )
16 simpll 731 . . . . . . . . 9  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  c  =  C )
1716fveq2d 5724 . . . . . . . 8  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  (comp `  C ) )
18 cidfval.o . . . . . . . 8  |-  .x.  =  (comp `  C )
1917, 18syl6eqr 2485 . . . . . . 7  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  (comp `  c )  =  .x.  )
20 simpllr 736 . . . . . . . 8  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  b  =  B )
21 simplr 732 . . . . . . . . . 10  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  h  =  H )
2221oveqd 6090 . . . . . . . . 9  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
x h x )  =  ( x H x ) )
2321oveqd 6090 . . . . . . . . . . . 12  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
y h x )  =  ( y H x ) )
24 simpr 448 . . . . . . . . . . . . . . 15  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  o  =  .x.  )
2524oveqd 6090 . . . . . . . . . . . . . 14  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( <. y ,  x >. o x )  =  (
<. y ,  x >.  .x.  x ) )
2625oveqd 6090 . . . . . . . . . . . . 13  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
g ( <. y ,  x >. o x ) f )  =  ( g ( <. y ,  x >.  .x.  x ) f ) )
2726eqeq1d 2443 . . . . . . . . . . . 12  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
( g ( <.
y ,  x >. o x ) f )  =  f  <->  ( g
( <. y ,  x >.  .x.  x ) f )  =  f ) )
2823, 27raleqbidv 2908 . . . . . . . . . . 11  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( A. f  e.  (
y h x ) ( g ( <.
y ,  x >. o x ) f )  =  f  <->  A. f  e.  ( y H x ) ( g (
<. y ,  x >.  .x.  x ) f )  =  f ) )
2921oveqd 6090 . . . . . . . . . . . 12  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
x h y )  =  ( x H y ) )
3024oveqd 6090 . . . . . . . . . . . . . 14  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( <. x ,  x >. o y )  =  (
<. x ,  x >.  .x.  y ) )
3130oveqd 6090 . . . . . . . . . . . . 13  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
f ( <. x ,  x >. o y ) g )  =  ( f ( <. x ,  x >.  .x.  y ) g ) )
3231eqeq1d 2443 . . . . . . . . . . . 12  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
( f ( <.
x ,  x >. o y ) g )  =  f  <->  ( f
( <. x ,  x >.  .x.  y ) g )  =  f ) )
3329, 32raleqbidv 2908 . . . . . . . . . . 11  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( A. f  e.  (
x h y ) ( f ( <.
x ,  x >. o y ) g )  =  f  <->  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) )
3428, 33anbi12d 692 . . . . . . . . . 10  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  <->  ( A. f  e.  ( y H x ) ( g (
<. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) )
3520, 34raleqbidv 2908 . . . . . . . . 9  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( A. y  e.  b 
( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f )  <->  A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) )
3622, 35riotaeqbidv 6544 . . . . . . . 8  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  (
y h x ) ( g ( <.
y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) )  =  (
iota_ g  e.  (
x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) )
3720, 36mpteq12dv 4279 . . . . . . 7  |-  ( ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  /\  o  =  .x.  )  ->  (
x  e.  b  |->  (
iota_ g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
3815, 19, 37csbied2 3286 . . . . . 6  |-  ( ( ( c  =  C  /\  b  =  B )  /\  h  =  H )  ->  [_ (comp `  c )  /  o ]_ ( x  e.  b 
|->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
399, 13, 38csbied2 3286 . . . . 5  |-  ( ( c  =  C  /\  b  =  B )  ->  [_ (  Hom  `  c
)  /  h ]_ [_ (comp `  c )  /  o ]_ (
x  e.  b  |->  (
iota_ g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
404, 7, 39csbied2 3286 . . . 4  |-  ( c  =  C  ->  [_ ( Base `  c )  / 
b ]_ [_ (  Hom  `  c )  /  h ]_ [_ (comp `  c
)  /  o ]_ ( x  e.  b  |->  ( iota_ g  e.  ( x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
41 df-cid 13886 . . . 4  |-  Id  =  ( c  e.  Cat  |->  [_ ( Base `  c
)  /  b ]_ [_ (  Hom  `  c
)  /  h ]_ [_ (comp `  c )  /  o ]_ (
x  e.  b  |->  (
iota_ g  e.  (
x h x ) A. y  e.  b  ( A. f  e.  ( y h x ) ( g (
<. y ,  x >. o x ) f )  =  f  /\  A. f  e.  ( x h y ) ( f ( <. x ,  x >. o y ) g )  =  f ) ) ) )
42 fvex 5734 . . . . . 6  |-  ( Base `  C )  e.  _V
436, 42eqeltri 2505 . . . . 5  |-  B  e. 
_V
4443mptex 5958 . . . 4  |-  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) ) )  e.  _V
4540, 41, 44fvmpt 5798 . . 3  |-  ( C  e.  Cat  ->  ( Id `  C )  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <.
y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f ( <. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
462, 45syl 16 . 2  |-  ( ph  ->  ( Id `  C
)  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
471, 46syl5eq 2479 1  |-  ( ph  ->  .1.  =  ( x  e.  B  |->  ( iota_ g  e.  ( x H x ) A. y  e.  B  ( A. f  e.  ( y H x ) ( g ( <. y ,  x >.  .x.  x ) f )  =  f  /\  A. f  e.  ( x H y ) ( f (
<. x ,  x >.  .x.  y ) g )  =  f ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2697   _Vcvv 2948   [_csb 3243   <.cop 3809    e. cmpt 4258   ` cfv 5446  (class class class)co 6073   iota_crio 6534   Basecbs 13461    Hom chom 13532  compcco 13533   Catccat 13881   Idccid 13882
This theorem is referenced by:  cidval  13894  cidfn  13896  catidd  13897  cidpropd  13928
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-riota 6541  df-cid 13886
  Copyright terms: Public domain W3C validator