Users' Mathboxes Mathbox for Paul Chapman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  circum Unicode version

Theorem circum 24007
Description: The circumference of a circle of radius  R, defined as the limit as  n  ~~>  +oo of the perimeter of an inscribed n-sided isogons, is  ( (
2  x.  pi )  x.  R ). (Contributed by Paul Chapman, 10-Nov-2012.) (Proof shortened by Mario Carneiro, 21-May-2014.)
Hypotheses
Ref Expression
circum.1  |-  A  =  ( ( 2  x.  pi )  /  n
)
circum.2  |-  P  =  ( n  e.  NN  |->  ( ( 2  x.  n )  x.  ( R  x.  ( sin `  ( A  /  2
) ) ) ) )
circum.3  |-  R  e.  RR
Assertion
Ref Expression
circum  |-  P  ~~>  ( ( 2  x.  pi )  x.  R )
Distinct variable group:    R, n
Allowed substitution hints:    A( n)    P( n)

Proof of Theorem circum
Dummy variables  y 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 10263 . . . 4  |-  NN  =  ( ZZ>= `  1 )
2 1z 10053 . . . . 5  |-  1  e.  ZZ
32a1i 10 . . . 4  |-  (  T. 
->  1  e.  ZZ )
4 pire 19832 . . . . . . . . . . 11  |-  pi  e.  RR
5 pipos 19833 . . . . . . . . . . 11  |-  0  <  pi
64, 5elrpii 10357 . . . . . . . . . 10  |-  pi  e.  RR+
7 nnrp 10363 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n  e.  RR+ )
8 rpdivcl 10376 . . . . . . . . . 10  |-  ( ( pi  e.  RR+  /\  n  e.  RR+ )  ->  (
pi  /  n )  e.  RR+ )
96, 7, 8sylancr 644 . . . . . . . . 9  |-  ( n  e.  NN  ->  (
pi  /  n )  e.  RR+ )
109rprene0d 10398 . . . . . . . 8  |-  ( n  e.  NN  ->  (
( pi  /  n
)  e.  RR  /\  ( pi  /  n
)  =/=  0 ) )
11 eldifsn 3749 . . . . . . . 8  |-  ( ( pi  /  n )  e.  ( RR  \  { 0 } )  <-> 
( ( pi  /  n )  e.  RR  /\  ( pi  /  n
)  =/=  0 ) )
1210, 11sylibr 203 . . . . . . 7  |-  ( n  e.  NN  ->  (
pi  /  n )  e.  ( RR  \  {
0 } ) )
1312adantl 452 . . . . . 6  |-  ( (  T.  /\  n  e.  NN )  ->  (
pi  /  n )  e.  ( RR  \  {
0 } ) )
14 eqidd 2284 . . . . . 6  |-  (  T. 
->  ( n  e.  NN  |->  ( pi  /  n
) )  =  ( n  e.  NN  |->  ( pi  /  n ) ) )
15 eqidd 2284 . . . . . 6  |-  (  T. 
->  ( y  e.  ( RR  \  { 0 } )  |->  ( ( sin `  y )  /  y ) )  =  ( y  e.  ( RR  \  {
0 } )  |->  ( ( sin `  y
)  /  y ) ) )
16 fveq2 5525 . . . . . . 7  |-  ( y  =  ( pi  /  n )  ->  ( sin `  y )  =  ( sin `  (
pi  /  n )
) )
17 id 19 . . . . . . 7  |-  ( y  =  ( pi  /  n )  ->  y  =  ( pi  /  n ) )
1816, 17oveq12d 5876 . . . . . 6  |-  ( y  =  ( pi  /  n )  ->  (
( sin `  y
)  /  y )  =  ( ( sin `  ( pi  /  n
) )  /  (
pi  /  n )
) )
1913, 14, 15, 18fmptco 5691 . . . . 5  |-  (  T. 
->  ( ( y  e.  ( RR  \  {
0 } )  |->  ( ( sin `  y
)  /  y ) )  o.  ( n  e.  NN  |->  ( pi 
/  n ) ) )  =  ( n  e.  NN  |->  ( ( sin `  ( pi 
/  n ) )  /  ( pi  /  n ) ) ) )
20 eqid 2283 . . . . . . 7  |-  ( n  e.  NN  |->  ( pi 
/  n ) )  =  ( n  e.  NN  |->  ( pi  /  n ) )
2120, 12fmpti 5683 . . . . . 6  |-  ( n  e.  NN  |->  ( pi 
/  n ) ) : NN --> ( RR 
\  { 0 } )
224recni 8849 . . . . . . 7  |-  pi  e.  CC
23 divcnv 12312 . . . . . . 7  |-  ( pi  e.  CC  ->  (
n  e.  NN  |->  ( pi  /  n ) )  ~~>  0 )
2422, 23mp1i 11 . . . . . 6  |-  (  T. 
->  ( n  e.  NN  |->  ( pi  /  n
) )  ~~>  0 )
25 sinccvg 24006 . . . . . 6  |-  ( ( ( n  e.  NN  |->  ( pi  /  n
) ) : NN --> ( RR  \  { 0 } )  /\  (
n  e.  NN  |->  ( pi  /  n ) )  ~~>  0 )  -> 
( ( y  e.  ( RR  \  {
0 } )  |->  ( ( sin `  y
)  /  y ) )  o.  ( n  e.  NN  |->  ( pi 
/  n ) ) )  ~~>  1 )
2621, 24, 25sylancr 644 . . . . 5  |-  (  T. 
->  ( ( y  e.  ( RR  \  {
0 } )  |->  ( ( sin `  y
)  /  y ) )  o.  ( n  e.  NN  |->  ( pi 
/  n ) ) )  ~~>  1 )
2719, 26eqbrtrrd 4045 . . . 4  |-  (  T. 
->  ( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) )  ~~>  1 )
28 2re 9815 . . . . . . . 8  |-  2  e.  RR
2928, 4remulcli 8851 . . . . . . 7  |-  ( 2  x.  pi )  e.  RR
30 circum.3 . . . . . . 7  |-  R  e.  RR
3129, 30remulcli 8851 . . . . . 6  |-  ( ( 2  x.  pi )  x.  R )  e.  RR
3231recni 8849 . . . . 5  |-  ( ( 2  x.  pi )  x.  R )  e.  CC
3332a1i 10 . . . 4  |-  (  T. 
->  ( ( 2  x.  pi )  x.  R
)  e.  CC )
34 circum.2 . . . . . 6  |-  P  =  ( n  e.  NN  |->  ( ( 2  x.  n )  x.  ( R  x.  ( sin `  ( A  /  2
) ) ) ) )
35 nnex 9752 . . . . . . 7  |-  NN  e.  _V
3635mptex 5746 . . . . . 6  |-  ( n  e.  NN  |->  ( ( 2  x.  n )  x.  ( R  x.  ( sin `  ( A  /  2 ) ) ) ) )  e. 
_V
3734, 36eqeltri 2353 . . . . 5  |-  P  e. 
_V
3837a1i 10 . . . 4  |-  (  T. 
->  P  e.  _V )
39 eqid 2283 . . . . . . . . . 10  |-  ( y  e.  ( RR  \  { 0 } ) 
|->  ( ( sin `  y
)  /  y ) )  =  ( y  e.  ( RR  \  { 0 } ) 
|->  ( ( sin `  y
)  /  y ) )
40 eldifi 3298 . . . . . . . . . . . 12  |-  ( y  e.  ( RR  \  { 0 } )  ->  y  e.  RR )
4140resincld 12423 . . . . . . . . . . 11  |-  ( y  e.  ( RR  \  { 0 } )  ->  ( sin `  y
)  e.  RR )
42 eldifsni 3750 . . . . . . . . . . 11  |-  ( y  e.  ( RR  \  { 0 } )  ->  y  =/=  0
)
4341, 40, 42redivcld 9588 . . . . . . . . . 10  |-  ( y  e.  ( RR  \  { 0 } )  ->  ( ( sin `  y )  /  y
)  e.  RR )
4439, 43fmpti 5683 . . . . . . . . 9  |-  ( y  e.  ( RR  \  { 0 } ) 
|->  ( ( sin `  y
)  /  y ) ) : ( RR 
\  { 0 } ) --> RR
45 fco 5398 . . . . . . . . 9  |-  ( ( ( y  e.  ( RR  \  { 0 } )  |->  ( ( sin `  y )  /  y ) ) : ( RR  \  { 0 } ) --> RR  /\  ( n  e.  NN  |->  ( pi 
/  n ) ) : NN --> ( RR 
\  { 0 } ) )  ->  (
( y  e.  ( RR  \  { 0 } )  |->  ( ( sin `  y )  /  y ) )  o.  ( n  e.  NN  |->  ( pi  /  n ) ) ) : NN --> RR )
4644, 21, 45mp2an 653 . . . . . . . 8  |-  ( ( y  e.  ( RR 
\  { 0 } )  |->  ( ( sin `  y )  /  y
) )  o.  (
n  e.  NN  |->  ( pi  /  n ) ) ) : NN --> RR
4719trud 1314 . . . . . . . . 9  |-  ( ( y  e.  ( RR 
\  { 0 } )  |->  ( ( sin `  y )  /  y
) )  o.  (
n  e.  NN  |->  ( pi  /  n ) ) )  =  ( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) )
4847feq1i 5383 . . . . . . . 8  |-  ( ( ( y  e.  ( RR  \  { 0 } )  |->  ( ( sin `  y )  /  y ) )  o.  ( n  e.  NN  |->  ( pi  /  n ) ) ) : NN --> RR  <->  ( n  e.  NN  |->  ( ( sin `  ( pi  /  n
) )  /  (
pi  /  n )
) ) : NN --> RR )
4946, 48mpbi 199 . . . . . . 7  |-  ( n  e.  NN  |->  ( ( sin `  ( pi 
/  n ) )  /  ( pi  /  n ) ) ) : NN --> RR
5049ffvelrni 5664 . . . . . 6  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) ) `  k )  e.  RR )
5150adantl 452 . . . . 5  |-  ( (  T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) ) `  k )  e.  RR )
5251recnd 8861 . . . 4  |-  ( (  T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) ) `  k )  e.  CC )
5328recni 8849 . . . . . . . . . . . . . . . 16  |-  2  e.  CC
5453a1i 10 . . . . . . . . . . . . . . 15  |-  ( (  T.  /\  k  e.  NN )  ->  2  e.  CC )
5522a1i 10 . . . . . . . . . . . . . . 15  |-  ( (  T.  /\  k  e.  NN )  ->  pi  e.  CC )
56 nncn 9754 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  k  e.  CC )
5756adantl 452 . . . . . . . . . . . . . . 15  |-  ( (  T.  /\  k  e.  NN )  ->  k  e.  CC )
58 nnne0 9778 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN  ->  k  =/=  0 )
5958adantl 452 . . . . . . . . . . . . . . 15  |-  ( (  T.  /\  k  e.  NN )  ->  k  =/=  0 )
6054, 55, 57, 59divassd 9571 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  k  e.  NN )  ->  (
( 2  x.  pi )  /  k )  =  ( 2  x.  (
pi  /  k )
) )
6160oveq1d 5873 . . . . . . . . . . . . 13  |-  ( (  T.  /\  k  e.  NN )  ->  (
( ( 2  x.  pi )  /  k
)  /  2 )  =  ( ( 2  x.  ( pi  / 
k ) )  / 
2 ) )
62 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( (  T.  /\  k  e.  NN )  ->  k  e.  NN )
63 nndivre 9781 . . . . . . . . . . . . . . . 16  |-  ( ( pi  e.  RR  /\  k  e.  NN )  ->  ( pi  /  k
)  e.  RR )
644, 62, 63sylancr 644 . . . . . . . . . . . . . . 15  |-  ( (  T.  /\  k  e.  NN )  ->  (
pi  /  k )  e.  RR )
6564recnd 8861 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  k  e.  NN )  ->  (
pi  /  k )  e.  CC )
66 2ne0 9829 . . . . . . . . . . . . . . 15  |-  2  =/=  0
6766a1i 10 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  k  e.  NN )  ->  2  =/=  0 )
6865, 54, 67divcan3d 9541 . . . . . . . . . . . . 13  |-  ( (  T.  /\  k  e.  NN )  ->  (
( 2  x.  (
pi  /  k )
)  /  2 )  =  ( pi  / 
k ) )
6961, 68eqtrd 2315 . . . . . . . . . . . 12  |-  ( (  T.  /\  k  e.  NN )  ->  (
( ( 2  x.  pi )  /  k
)  /  2 )  =  ( pi  / 
k ) )
7069fveq2d 5529 . . . . . . . . . . 11  |-  ( (  T.  /\  k  e.  NN )  ->  ( sin `  ( ( ( 2  x.  pi )  /  k )  / 
2 ) )  =  ( sin `  (
pi  /  k )
) )
7164resincld 12423 . . . . . . . . . . . . 13  |-  ( (  T.  /\  k  e.  NN )  ->  ( sin `  ( pi  / 
k ) )  e.  RR )
7271recnd 8861 . . . . . . . . . . . 12  |-  ( (  T.  /\  k  e.  NN )  ->  ( sin `  ( pi  / 
k ) )  e.  CC )
73 nnrp 10363 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  k  e.  RR+ )
7473adantl 452 . . . . . . . . . . . . . 14  |-  ( (  T.  /\  k  e.  NN )  ->  k  e.  RR+ )
75 rpdivcl 10376 . . . . . . . . . . . . . 14  |-  ( ( pi  e.  RR+  /\  k  e.  RR+ )  ->  (
pi  /  k )  e.  RR+ )
766, 74, 75sylancr 644 . . . . . . . . . . . . 13  |-  ( (  T.  /\  k  e.  NN )  ->  (
pi  /  k )  e.  RR+ )
7776rpne0d 10395 . . . . . . . . . . . 12  |-  ( (  T.  /\  k  e.  NN )  ->  (
pi  /  k )  =/=  0 )
7872, 65, 77divcan2d 9538 . . . . . . . . . . 11  |-  ( (  T.  /\  k  e.  NN )  ->  (
( pi  /  k
)  x.  ( ( sin `  ( pi 
/  k ) )  /  ( pi  / 
k ) ) )  =  ( sin `  (
pi  /  k )
) )
7970, 78eqtr4d 2318 . . . . . . . . . 10  |-  ( (  T.  /\  k  e.  NN )  ->  ( sin `  ( ( ( 2  x.  pi )  /  k )  / 
2 ) )  =  ( ( pi  / 
k )  x.  (
( sin `  (
pi  /  k )
)  /  ( pi 
/  k ) ) ) )
8079oveq2d 5874 . . . . . . . . 9  |-  ( (  T.  /\  k  e.  NN )  ->  ( R  x.  ( sin `  ( ( ( 2  x.  pi )  / 
k )  /  2
) ) )  =  ( R  x.  (
( pi  /  k
)  x.  ( ( sin `  ( pi 
/  k ) )  /  ( pi  / 
k ) ) ) ) )
8130recni 8849 . . . . . . . . . . 11  |-  R  e.  CC
8281a1i 10 . . . . . . . . . 10  |-  ( (  T.  /\  k  e.  NN )  ->  R  e.  CC )
83 oveq2 5866 . . . . . . . . . . . . . . 15  |-  ( n  =  k  ->  (
pi  /  n )  =  ( pi  / 
k ) )
8483fveq2d 5529 . . . . . . . . . . . . . 14  |-  ( n  =  k  ->  ( sin `  ( pi  /  n ) )  =  ( sin `  (
pi  /  k )
) )
8584, 83oveq12d 5876 . . . . . . . . . . . . 13  |-  ( n  =  k  ->  (
( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) )  =  ( ( sin `  ( pi  /  k
) )  /  (
pi  /  k )
) )
86 eqid 2283 . . . . . . . . . . . . 13  |-  ( n  e.  NN  |->  ( ( sin `  ( pi 
/  n ) )  /  ( pi  /  n ) ) )  =  ( n  e.  NN  |->  ( ( sin `  ( pi  /  n
) )  /  (
pi  /  n )
) )
87 ovex 5883 . . . . . . . . . . . . 13  |-  ( ( sin `  ( pi 
/  k ) )  /  ( pi  / 
k ) )  e. 
_V
8885, 86, 87fvmpt 5602 . . . . . . . . . . . 12  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) ) `  k )  =  ( ( sin `  ( pi  /  k
) )  /  (
pi  /  k )
) )
8988adantl 452 . . . . . . . . . . 11  |-  ( (  T.  /\  k  e.  NN )  ->  (
( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) ) `  k )  =  ( ( sin `  ( pi  /  k
) )  /  (
pi  /  k )
) )
9089, 52eqeltrrd 2358 . . . . . . . . . 10  |-  ( (  T.  /\  k  e.  NN )  ->  (
( sin `  (
pi  /  k )
)  /  ( pi 
/  k ) )  e.  CC )
9182, 65, 90mulassd 8858 . . . . . . . . 9  |-  ( (  T.  /\  k  e.  NN )  ->  (
( R  x.  (
pi  /  k )
)  x.  ( ( sin `  ( pi 
/  k ) )  /  ( pi  / 
k ) ) )  =  ( R  x.  ( ( pi  / 
k )  x.  (
( sin `  (
pi  /  k )
)  /  ( pi 
/  k ) ) ) ) )
9280, 91eqtr4d 2318 . . . . . . . 8  |-  ( (  T.  /\  k  e.  NN )  ->  ( R  x.  ( sin `  ( ( ( 2  x.  pi )  / 
k )  /  2
) ) )  =  ( ( R  x.  ( pi  /  k
) )  x.  (
( sin `  (
pi  /  k )
)  /  ( pi 
/  k ) ) ) )
9392oveq2d 5874 . . . . . . 7  |-  ( (  T.  /\  k  e.  NN )  ->  (
( 2  x.  k
)  x.  ( R  x.  ( sin `  (
( ( 2  x.  pi )  /  k
)  /  2 ) ) ) )  =  ( ( 2  x.  k )  x.  (
( R  x.  (
pi  /  k )
)  x.  ( ( sin `  ( pi 
/  k ) )  /  ( pi  / 
k ) ) ) ) )
94 mulcl 8821 . . . . . . . . 9  |-  ( ( 2  e.  CC  /\  k  e.  CC )  ->  ( 2  x.  k
)  e.  CC )
9553, 57, 94sylancr 644 . . . . . . . 8  |-  ( (  T.  /\  k  e.  NN )  ->  (
2  x.  k )  e.  CC )
96 mulcl 8821 . . . . . . . . 9  |-  ( ( R  e.  CC  /\  ( pi  /  k
)  e.  CC )  ->  ( R  x.  ( pi  /  k
) )  e.  CC )
9781, 65, 96sylancr 644 . . . . . . . 8  |-  ( (  T.  /\  k  e.  NN )  ->  ( R  x.  ( pi  /  k ) )  e.  CC )
9895, 97, 90mulassd 8858 . . . . . . 7  |-  ( (  T.  /\  k  e.  NN )  ->  (
( ( 2  x.  k )  x.  ( R  x.  ( pi  /  k ) ) )  x.  ( ( sin `  ( pi  /  k
) )  /  (
pi  /  k )
) )  =  ( ( 2  x.  k
)  x.  ( ( R  x.  ( pi 
/  k ) )  x.  ( ( sin `  ( pi  /  k
) )  /  (
pi  /  k )
) ) ) )
9993, 98eqtr4d 2318 . . . . . 6  |-  ( (  T.  /\  k  e.  NN )  ->  (
( 2  x.  k
)  x.  ( R  x.  ( sin `  (
( ( 2  x.  pi )  /  k
)  /  2 ) ) ) )  =  ( ( ( 2  x.  k )  x.  ( R  x.  (
pi  /  k )
) )  x.  (
( sin `  (
pi  /  k )
)  /  ( pi 
/  k ) ) ) )
10054, 57, 82, 65mul4d 9024 . . . . . . . 8  |-  ( (  T.  /\  k  e.  NN )  ->  (
( 2  x.  k
)  x.  ( R  x.  ( pi  / 
k ) ) )  =  ( ( 2  x.  R )  x.  ( k  x.  (
pi  /  k )
) ) )
10155, 57, 59divcan2d 9538 . . . . . . . . . 10  |-  ( (  T.  /\  k  e.  NN )  ->  (
k  x.  ( pi 
/  k ) )  =  pi )
102101oveq2d 5874 . . . . . . . . 9  |-  ( (  T.  /\  k  e.  NN )  ->  (
( 2  x.  R
)  x.  ( k  x.  ( pi  / 
k ) ) )  =  ( ( 2  x.  R )  x.  pi ) )
10354, 82, 55mul32d 9022 . . . . . . . . 9  |-  ( (  T.  /\  k  e.  NN )  ->  (
( 2  x.  R
)  x.  pi )  =  ( ( 2  x.  pi )  x.  R ) )
104102, 103eqtrd 2315 . . . . . . . 8  |-  ( (  T.  /\  k  e.  NN )  ->  (
( 2  x.  R
)  x.  ( k  x.  ( pi  / 
k ) ) )  =  ( ( 2  x.  pi )  x.  R ) )
105100, 104eqtrd 2315 . . . . . . 7  |-  ( (  T.  /\  k  e.  NN )  ->  (
( 2  x.  k
)  x.  ( R  x.  ( pi  / 
k ) ) )  =  ( ( 2  x.  pi )  x.  R ) )
106105oveq1d 5873 . . . . . 6  |-  ( (  T.  /\  k  e.  NN )  ->  (
( ( 2  x.  k )  x.  ( R  x.  ( pi  /  k ) ) )  x.  ( ( sin `  ( pi  /  k
) )  /  (
pi  /  k )
) )  =  ( ( ( 2  x.  pi )  x.  R
)  x.  ( ( sin `  ( pi 
/  k ) )  /  ( pi  / 
k ) ) ) )
10799, 106eqtrd 2315 . . . . 5  |-  ( (  T.  /\  k  e.  NN )  ->  (
( 2  x.  k
)  x.  ( R  x.  ( sin `  (
( ( 2  x.  pi )  /  k
)  /  2 ) ) ) )  =  ( ( ( 2  x.  pi )  x.  R )  x.  (
( sin `  (
pi  /  k )
)  /  ( pi 
/  k ) ) ) )
108 oveq2 5866 . . . . . . . 8  |-  ( n  =  k  ->  (
2  x.  n )  =  ( 2  x.  k ) )
109 circum.1 . . . . . . . . . . . 12  |-  A  =  ( ( 2  x.  pi )  /  n
)
110 oveq2 5866 . . . . . . . . . . . 12  |-  ( n  =  k  ->  (
( 2  x.  pi )  /  n )  =  ( ( 2  x.  pi )  /  k
) )
111109, 110syl5eq 2327 . . . . . . . . . . 11  |-  ( n  =  k  ->  A  =  ( ( 2  x.  pi )  / 
k ) )
112111oveq1d 5873 . . . . . . . . . 10  |-  ( n  =  k  ->  ( A  /  2 )  =  ( ( ( 2  x.  pi )  / 
k )  /  2
) )
113112fveq2d 5529 . . . . . . . . 9  |-  ( n  =  k  ->  ( sin `  ( A  / 
2 ) )  =  ( sin `  (
( ( 2  x.  pi )  /  k
)  /  2 ) ) )
114113oveq2d 5874 . . . . . . . 8  |-  ( n  =  k  ->  ( R  x.  ( sin `  ( A  /  2
) ) )  =  ( R  x.  ( sin `  ( ( ( 2  x.  pi )  /  k )  / 
2 ) ) ) )
115108, 114oveq12d 5876 . . . . . . 7  |-  ( n  =  k  ->  (
( 2  x.  n
)  x.  ( R  x.  ( sin `  ( A  /  2 ) ) ) )  =  ( ( 2  x.  k
)  x.  ( R  x.  ( sin `  (
( ( 2  x.  pi )  /  k
)  /  2 ) ) ) ) )
116 ovex 5883 . . . . . . 7  |-  ( ( 2  x.  k )  x.  ( R  x.  ( sin `  ( ( ( 2  x.  pi )  /  k )  / 
2 ) ) ) )  e.  _V
117115, 34, 116fvmpt 5602 . . . . . 6  |-  ( k  e.  NN  ->  ( P `  k )  =  ( ( 2  x.  k )  x.  ( R  x.  ( sin `  ( ( ( 2  x.  pi )  /  k )  / 
2 ) ) ) ) )
118117adantl 452 . . . . 5  |-  ( (  T.  /\  k  e.  NN )  ->  ( P `  k )  =  ( ( 2  x.  k )  x.  ( R  x.  ( sin `  ( ( ( 2  x.  pi )  /  k )  / 
2 ) ) ) ) )
11989oveq2d 5874 . . . . 5  |-  ( (  T.  /\  k  e.  NN )  ->  (
( ( 2  x.  pi )  x.  R
)  x.  ( ( n  e.  NN  |->  ( ( sin `  (
pi  /  n )
)  /  ( pi 
/  n ) ) ) `  k ) )  =  ( ( ( 2  x.  pi )  x.  R )  x.  ( ( sin `  (
pi  /  k )
)  /  ( pi 
/  k ) ) ) )
120107, 118, 1193eqtr4d 2325 . . . 4  |-  ( (  T.  /\  k  e.  NN )  ->  ( P `  k )  =  ( ( ( 2  x.  pi )  x.  R )  x.  ( ( n  e.  NN  |->  ( ( sin `  ( pi  /  n
) )  /  (
pi  /  n )
) ) `  k
) ) )
1211, 3, 27, 33, 38, 52, 120climmulc2 12110 . . 3  |-  (  T. 
->  P  ~~>  ( (
( 2  x.  pi )  x.  R )  x.  1 ) )
122121trud 1314 . 2  |-  P  ~~>  ( ( ( 2  x.  pi )  x.  R )  x.  1 )
12332mulid1i 8839 . 2  |-  ( ( ( 2  x.  pi )  x.  R )  x.  1 )  =  ( ( 2  x.  pi )  x.  R )
124122, 123breqtri 4046 1  |-  P  ~~>  ( ( 2  x.  pi )  x.  R )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    T. wtru 1307    = wceq 1623    e. wcel 1684    =/= wne 2446   _Vcvv 2788    \ cdif 3149   {csn 3640   class class class wbr 4023    e. cmpt 4077    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    x. cmul 8742    / cdiv 9423   NNcn 9746   2c2 9795   ZZcz 10024   RR+crp 10354    ~~> cli 11958   sincsin 12345   picpi 12348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816  ax-mulf 8817
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-of 6078  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-map 6774  df-pm 6775  df-ixp 6818  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-fi 7165  df-sup 7194  df-oi 7225  df-card 7572  df-cda 7794  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-4 9806  df-5 9807  df-6 9808  df-7 9809  df-8 9810  df-9 9811  df-10 9812  df-n0 9966  df-z 10025  df-dec 10125  df-uz 10231  df-q 10317  df-rp 10355  df-xneg 10452  df-xadd 10453  df-xmul 10454  df-ioo 10660  df-ioc 10661  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-fac 11289  df-bc 11316  df-hash 11338  df-shft 11562  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159  df-ef 12349  df-sin 12351  df-cos 12352  df-pi 12354  df-struct 13150  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-ress 13155  df-plusg 13221  df-mulr 13222  df-starv 13223  df-sca 13224  df-vsca 13225  df-tset 13227  df-ple 13228  df-ds 13230  df-hom 13232  df-cco 13233  df-rest 13327  df-topn 13328  df-topgen 13344  df-pt 13345  df-prds 13348  df-xrs 13403  df-0g 13404  df-gsum 13405  df-qtop 13410  df-imas 13411  df-xps 13413  df-mre 13488  df-mrc 13489  df-acs 13491  df-mnd 14367  df-submnd 14416  df-mulg 14492  df-cntz 14793  df-cmn 15091  df-xmet 16373  df-met 16374  df-bl 16375  df-mopn 16376  df-cnfld 16378  df-top 16636  df-bases 16638  df-topon 16639  df-topsp 16640  df-cld 16756  df-ntr 16757  df-cls 16758  df-nei 16835  df-lp 16868  df-perf 16869  df-cn 16957  df-cnp 16958  df-haus 17043  df-tx 17257  df-hmeo 17446  df-fbas 17520  df-fg 17521  df-fil 17541  df-fm 17633  df-flim 17634  df-flf 17635  df-xms 17885  df-ms 17886  df-tms 17887  df-cncf 18382  df-limc 19216  df-dv 19217
  Copyright terms: Public domain W3C validator