MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cju Structured version   Unicode version

Theorem cju 9996
Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cju  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
Distinct variable group:    x, A

Proof of Theorem cju
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 9087 . . 3  |-  ( A  e.  CC  ->  E. y  e.  RR  E. z  e.  RR  A  =  ( y  +  ( _i  x.  z ) ) )
2 recn 9080 . . . . . . 7  |-  ( y  e.  RR  ->  y  e.  CC )
3 ax-icn 9049 . . . . . . . 8  |-  _i  e.  CC
4 recn 9080 . . . . . . . 8  |-  ( z  e.  RR  ->  z  e.  CC )
5 mulcl 9074 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  z  e.  CC )  ->  ( _i  x.  z
)  e.  CC )
63, 4, 5sylancr 645 . . . . . . 7  |-  ( z  e.  RR  ->  (
_i  x.  z )  e.  CC )
7 subcl 9305 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( _i  x.  z
)  e.  CC )  ->  ( y  -  ( _i  x.  z
) )  e.  CC )
82, 6, 7syl2an 464 . . . . . 6  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  -  (
_i  x.  z )
)  e.  CC )
92adantr 452 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  y  e.  CC )
106adantl 453 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  z
)  e.  CC )
119, 10, 9ppncand 9451 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  +  ( y  -  ( _i  x.  z ) ) )  =  ( y  +  y ) )
12 readdcl 9073 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  y  e.  RR )  ->  ( y  +  y )  e.  RR )
1312anidms 627 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  +  y )  e.  RR )
1413adantr 452 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  +  y )  e.  RR )
1511, 14eqeltrd 2510 . . . . . 6  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  +  ( y  -  ( _i  x.  z ) ) )  e.  RR )
169, 10, 10pnncand 9450 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) )  =  ( ( _i  x.  z )  +  ( _i  x.  z ) ) )
173a1i 11 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  _i  e.  CC )
184adantl 453 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  z  e.  CC )
1917, 18, 18adddid 9112 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
z  +  z ) )  =  ( ( _i  x.  z )  +  ( _i  x.  z ) ) )
2016, 19eqtr4d 2471 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) )  =  ( _i  x.  ( z  +  z ) ) )
2120oveq2d 6097 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  =  ( _i  x.  ( _i  x.  ( z  +  z ) ) ) )
2218, 18addcld 9107 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( z  +  z )  e.  CC )
23 mulass 9078 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
z  +  z )  e.  CC )  -> 
( ( _i  x.  _i )  x.  (
z  +  z ) )  =  ( _i  x.  ( _i  x.  ( z  +  z ) ) ) )
243, 3, 23mp3an12 1269 . . . . . . . . 9  |-  ( ( z  +  z )  e.  CC  ->  (
( _i  x.  _i )  x.  ( z  +  z ) )  =  ( _i  x.  ( _i  x.  (
z  +  z ) ) ) )
2522, 24syl 16 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( _i  x.  _i )  x.  (
z  +  z ) )  =  ( _i  x.  ( _i  x.  ( z  +  z ) ) ) )
2621, 25eqtr4d 2471 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  =  ( ( _i  x.  _i )  x.  ( z  +  z ) ) )
27 ixi 9651 . . . . . . . . 9  |-  ( _i  x.  _i )  = 
-u 1
28 1re 9090 . . . . . . . . . 10  |-  1  e.  RR
2928renegcli 9362 . . . . . . . . 9  |-  -u 1  e.  RR
3027, 29eqeltri 2506 . . . . . . . 8  |-  ( _i  x.  _i )  e.  RR
31 simpr 448 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  z  e.  RR )
3231, 31readdcld 9115 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( z  +  z )  e.  RR )
33 remulcl 9075 . . . . . . . 8  |-  ( ( ( _i  x.  _i )  e.  RR  /\  (
z  +  z )  e.  RR )  -> 
( ( _i  x.  _i )  x.  (
z  +  z ) )  e.  RR )
3430, 32, 33sylancr 645 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( _i  x.  _i )  x.  (
z  +  z ) )  e.  RR )
3526, 34eqeltrd 2510 . . . . . 6  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  e.  RR )
36 oveq2 6089 . . . . . . . . 9  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( y  +  ( _i  x.  z ) )  +  x )  =  ( ( y  +  ( _i  x.  z ) )  +  ( y  -  (
_i  x.  z )
) ) )
3736eleq1d 2502 . . . . . . . 8  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( ( y  +  ( _i  x.  z
) )  +  x
)  e.  RR  <->  ( (
y  +  ( _i  x.  z ) )  +  ( y  -  ( _i  x.  z
) ) )  e.  RR ) )
38 oveq2 6089 . . . . . . . . . 10  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( y  +  ( _i  x.  z ) )  -  x )  =  ( ( y  +  ( _i  x.  z ) )  -  ( y  -  (
_i  x.  z )
) ) )
3938oveq2d 6097 . . . . . . . . 9  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
_i  x.  ( (
y  +  ( _i  x.  z ) )  -  x ) )  =  ( _i  x.  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) ) ) )
4039eleq1d 2502 . . . . . . . 8  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR  <->  ( _i  x.  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) ) )  e.  RR ) )
4137, 40anbi12d 692 . . . . . . 7  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR )  <-> 
( ( ( y  +  ( _i  x.  z ) )  +  ( y  -  (
_i  x.  z )
) )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  e.  RR ) ) )
4241rspcev 3052 . . . . . 6  |-  ( ( ( y  -  (
_i  x.  z )
)  e.  CC  /\  ( ( ( y  +  ( _i  x.  z ) )  +  ( y  -  (
_i  x.  z )
) )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  e.  RR ) )  ->  E. x  e.  CC  ( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  ( ( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) )
438, 15, 35, 42syl12anc 1182 . . . . 5  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  E. x  e.  CC  ( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) )
44 oveq1 6088 . . . . . . . 8  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  ( A  +  x )  =  ( ( y  +  ( _i  x.  z ) )  +  x ) )
4544eleq1d 2502 . . . . . . 7  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
( A  +  x
)  e.  RR  <->  ( (
y  +  ( _i  x.  z ) )  +  x )  e.  RR ) )
46 oveq1 6088 . . . . . . . . 9  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  ( A  -  x )  =  ( ( y  +  ( _i  x.  z ) )  -  x ) )
4746oveq2d 6097 . . . . . . . 8  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
_i  x.  ( A  -  x ) )  =  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) ) )
4847eleq1d 2502 . . . . . . 7  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
( _i  x.  ( A  -  x )
)  e.  RR  <->  ( _i  x.  ( ( y  +  ( _i  x.  z
) )  -  x
) )  e.  RR ) )
4945, 48anbi12d 692 . . . . . 6  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) ) )
5049rexbidv 2726 . . . . 5  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  ( E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <->  E. x  e.  CC  ( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) ) )
5143, 50syl5ibrcom 214 . . . 4  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( A  =  ( y  +  ( _i  x.  z ) )  ->  E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) ) )
5251rexlimivv 2835 . . 3  |-  ( E. y  e.  RR  E. z  e.  RR  A  =  ( y  +  ( _i  x.  z
) )  ->  E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )
531, 52syl 16 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )
54 an4 798 . . . 4  |-  ( ( ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  <->  ( (
( A  +  x
)  e.  RR  /\  ( A  +  y
)  e.  RR )  /\  ( ( _i  x.  ( A  -  x ) )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) ) )
55 resubcl 9365 . . . . . . 7  |-  ( ( ( A  +  x
)  e.  RR  /\  ( A  +  y
)  e.  RR )  ->  ( ( A  +  x )  -  ( A  +  y
) )  e.  RR )
56 pnpcan 9340 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( A  +  x
)  -  ( A  +  y ) )  =  ( x  -  y ) )
57563expb 1154 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( ( A  +  x )  -  ( A  +  y ) )  =  ( x  -  y
) )
5857eleq1d 2502 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( A  +  x
)  -  ( A  +  y ) )  e.  RR  <->  ( x  -  y )  e.  RR ) )
5955, 58syl5ib 211 . . . . . 6  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( A  +  x
)  e.  RR  /\  ( A  +  y
)  e.  RR )  ->  ( x  -  y )  e.  RR ) )
60 resubcl 9365 . . . . . . . 8  |-  ( ( ( _i  x.  ( A  -  y )
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  ->  ( ( _i  x.  ( A  -  y ) )  -  ( _i  x.  ( A  -  x )
) )  e.  RR )
6160ancoms 440 . . . . . . 7  |-  ( ( ( _i  x.  ( A  -  x )
)  e.  RR  /\  ( _i  x.  ( A  -  y )
)  e.  RR )  ->  ( ( _i  x.  ( A  -  y ) )  -  ( _i  x.  ( A  -  x )
) )  e.  RR )
623a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  _i  e.  CC )
63 subcl 9305 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  -  y
)  e.  CC )
6463adantrl 697 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( A  -  y )  e.  CC )
65 subcl 9305 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  -  x
)  e.  CC )
6665adantrr 698 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( A  -  x )  e.  CC )
6762, 64, 66subdid 9489 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( _i  x.  ( ( A  -  y )  -  ( A  -  x )
) )  =  ( ( _i  x.  ( A  -  y )
)  -  ( _i  x.  ( A  -  x ) ) ) )
68 nnncan1 9337 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  CC  /\  x  e.  CC )  ->  (
( A  -  y
)  -  ( A  -  x ) )  =  ( x  -  y ) )
69683com23 1159 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( A  -  y
)  -  ( A  -  x ) )  =  ( x  -  y ) )
70693expb 1154 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( ( A  -  y )  -  ( A  -  x ) )  =  ( x  -  y
) )
7170oveq2d 6097 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( _i  x.  ( ( A  -  y )  -  ( A  -  x )
) )  =  ( _i  x.  ( x  -  y ) ) )
7267, 71eqtr3d 2470 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
_i  x.  ( A  -  y ) )  -  ( _i  x.  ( A  -  x
) ) )  =  ( _i  x.  (
x  -  y ) ) )
7372eleq1d 2502 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( _i  x.  ( A  -  y )
)  -  ( _i  x.  ( A  -  x ) ) )  e.  RR  <->  ( _i  x.  ( x  -  y
) )  e.  RR ) )
7461, 73syl5ib 211 . . . . . 6  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( _i  x.  ( A  -  x )
)  e.  RR  /\  ( _i  x.  ( A  -  y )
)  e.  RR )  ->  ( _i  x.  ( x  -  y
) )  e.  RR ) )
7559, 74anim12d 547 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( ( A  +  x )  e.  RR  /\  ( A  +  y )  e.  RR )  /\  ( ( _i  x.  ( A  -  x ) )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  -> 
( ( x  -  y )  e.  RR  /\  ( _i  x.  (
x  -  y ) )  e.  RR ) ) )
76 rimul 9991 . . . . . 6  |-  ( ( ( x  -  y
)  e.  RR  /\  ( _i  x.  (
x  -  y ) )  e.  RR )  ->  ( x  -  y )  =  0 )
7776a1i 11 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( x  -  y
)  e.  RR  /\  ( _i  x.  (
x  -  y ) )  e.  RR )  ->  ( x  -  y )  =  0 ) )
78 subeq0 9327 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y )  =  0  <-> 
x  =  y ) )
7978biimpd 199 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y )  =  0  ->  x  =  y ) )
8079adantl 453 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
x  -  y )  =  0  ->  x  =  y ) )
8175, 77, 803syld 53 . . . 4  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( ( A  +  x )  e.  RR  /\  ( A  +  y )  e.  RR )  /\  ( ( _i  x.  ( A  -  x ) )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
)
8254, 81syl5bi 209 . . 3  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
)
8382ralrimivva 2798 . 2  |-  ( A  e.  CC  ->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
)
84 oveq2 6089 . . . . 5  |-  ( x  =  y  ->  ( A  +  x )  =  ( A  +  y ) )
8584eleq1d 2502 . . . 4  |-  ( x  =  y  ->  (
( A  +  x
)  e.  RR  <->  ( A  +  y )  e.  RR ) )
86 oveq2 6089 . . . . . 6  |-  ( x  =  y  ->  ( A  -  x )  =  ( A  -  y ) )
8786oveq2d 6097 . . . . 5  |-  ( x  =  y  ->  (
_i  x.  ( A  -  x ) )  =  ( _i  x.  ( A  -  y )
) )
8887eleq1d 2502 . . . 4  |-  ( x  =  y  ->  (
( _i  x.  ( A  -  x )
)  e.  RR  <->  ( _i  x.  ( A  -  y
) )  e.  RR ) )
8985, 88anbi12d 692 . . 3  |-  ( x  =  y  ->  (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y )
)  e.  RR ) ) )
9089reu4 3128 . 2  |-  ( E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR )  /\  A. x  e.  CC  A. y  e.  CC  ( ( ( ( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
) )
9153, 83, 90sylanbrc 646 1  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725   A.wral 2705   E.wrex 2706   E!wreu 2707  (class class class)co 6081   CCcc 8988   RRcr 8989   0cc0 8990   1c1 8991   _ici 8992    + caddc 8993    x. cmul 8995    - cmin 9291   -ucneg 9292
This theorem is referenced by:  cjth  11908  cjf  11909  remim  11922
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-mpt 4268  df-id 4498  df-po 4503  df-so 4504  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678
  Copyright terms: Public domain W3C validator