MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cju Unicode version

Theorem cju 9829
Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cju  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
Distinct variable group:    x, A

Proof of Theorem cju
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 8921 . . 3  |-  ( A  e.  CC  ->  E. y  e.  RR  E. z  e.  RR  A  =  ( y  +  ( _i  x.  z ) ) )
2 recn 8914 . . . . . . 7  |-  ( y  e.  RR  ->  y  e.  CC )
3 ax-icn 8883 . . . . . . . 8  |-  _i  e.  CC
4 recn 8914 . . . . . . . 8  |-  ( z  e.  RR  ->  z  e.  CC )
5 mulcl 8908 . . . . . . . 8  |-  ( ( _i  e.  CC  /\  z  e.  CC )  ->  ( _i  x.  z
)  e.  CC )
63, 4, 5sylancr 644 . . . . . . 7  |-  ( z  e.  RR  ->  (
_i  x.  z )  e.  CC )
7 subcl 9138 . . . . . . 7  |-  ( ( y  e.  CC  /\  ( _i  x.  z
)  e.  CC )  ->  ( y  -  ( _i  x.  z
) )  e.  CC )
82, 6, 7syl2an 463 . . . . . 6  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  -  (
_i  x.  z )
)  e.  CC )
92adantr 451 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  y  e.  CC )
106adantl 452 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  z
)  e.  CC )
119, 10, 9ppncand 9284 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  +  ( y  -  ( _i  x.  z ) ) )  =  ( y  +  y ) )
12 readdcl 8907 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  y  e.  RR )  ->  ( y  +  y )  e.  RR )
1312anidms 626 . . . . . . . 8  |-  ( y  e.  RR  ->  (
y  +  y )  e.  RR )
1413adantr 451 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( y  +  y )  e.  RR )
1511, 14eqeltrd 2432 . . . . . 6  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  +  ( y  -  ( _i  x.  z ) ) )  e.  RR )
169, 10, 10pnncand 9283 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) )  =  ( ( _i  x.  z )  +  ( _i  x.  z ) ) )
173a1i 10 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  _i  e.  CC )
184adantl 452 . . . . . . . . . . 11  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  z  e.  CC )
1917, 18, 18adddid 8946 . . . . . . . . . 10  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
z  +  z ) )  =  ( ( _i  x.  z )  +  ( _i  x.  z ) ) )
2016, 19eqtr4d 2393 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) )  =  ( _i  x.  ( z  +  z ) ) )
2120oveq2d 5958 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  =  ( _i  x.  ( _i  x.  ( z  +  z ) ) ) )
2218, 18addcld 8941 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( z  +  z )  e.  CC )
23 mulass 8912 . . . . . . . . . 10  |-  ( ( _i  e.  CC  /\  _i  e.  CC  /\  (
z  +  z )  e.  CC )  -> 
( ( _i  x.  _i )  x.  (
z  +  z ) )  =  ( _i  x.  ( _i  x.  ( z  +  z ) ) ) )
243, 3, 23mp3an12 1267 . . . . . . . . 9  |-  ( ( z  +  z )  e.  CC  ->  (
( _i  x.  _i )  x.  ( z  +  z ) )  =  ( _i  x.  ( _i  x.  (
z  +  z ) ) ) )
2522, 24syl 15 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( _i  x.  _i )  x.  (
z  +  z ) )  =  ( _i  x.  ( _i  x.  ( z  +  z ) ) ) )
2621, 25eqtr4d 2393 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  =  ( ( _i  x.  _i )  x.  ( z  +  z ) ) )
27 ixi 9484 . . . . . . . . 9  |-  ( _i  x.  _i )  = 
-u 1
28 1re 8924 . . . . . . . . . 10  |-  1  e.  RR
2928renegcli 9195 . . . . . . . . 9  |-  -u 1  e.  RR
3027, 29eqeltri 2428 . . . . . . . 8  |-  ( _i  x.  _i )  e.  RR
31 simpr 447 . . . . . . . . 9  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  z  e.  RR )
3231, 31readdcld 8949 . . . . . . . 8  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( z  +  z )  e.  RR )
33 remulcl 8909 . . . . . . . 8  |-  ( ( ( _i  x.  _i )  e.  RR  /\  (
z  +  z )  e.  RR )  -> 
( ( _i  x.  _i )  x.  (
z  +  z ) )  e.  RR )
3430, 32, 33sylancr 644 . . . . . . 7  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( ( _i  x.  _i )  x.  (
z  +  z ) )  e.  RR )
3526, 34eqeltrd 2432 . . . . . 6  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  e.  RR )
36 oveq2 5950 . . . . . . . . 9  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( y  +  ( _i  x.  z ) )  +  x )  =  ( ( y  +  ( _i  x.  z ) )  +  ( y  -  (
_i  x.  z )
) ) )
3736eleq1d 2424 . . . . . . . 8  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( ( y  +  ( _i  x.  z
) )  +  x
)  e.  RR  <->  ( (
y  +  ( _i  x.  z ) )  +  ( y  -  ( _i  x.  z
) ) )  e.  RR ) )
38 oveq2 5950 . . . . . . . . . 10  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( y  +  ( _i  x.  z ) )  -  x )  =  ( ( y  +  ( _i  x.  z ) )  -  ( y  -  (
_i  x.  z )
) ) )
3938oveq2d 5958 . . . . . . . . 9  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
_i  x.  ( (
y  +  ( _i  x.  z ) )  -  x ) )  =  ( _i  x.  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) ) ) )
4039eleq1d 2424 . . . . . . . 8  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR  <->  ( _i  x.  ( ( y  +  ( _i  x.  z
) )  -  (
y  -  ( _i  x.  z ) ) ) )  e.  RR ) )
4137, 40anbi12d 691 . . . . . . 7  |-  ( x  =  ( y  -  ( _i  x.  z
) )  ->  (
( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR )  <-> 
( ( ( y  +  ( _i  x.  z ) )  +  ( y  -  (
_i  x.  z )
) )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  e.  RR ) ) )
4241rspcev 2960 . . . . . 6  |-  ( ( ( y  -  (
_i  x.  z )
)  e.  CC  /\  ( ( ( y  +  ( _i  x.  z ) )  +  ( y  -  (
_i  x.  z )
) )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  ( y  -  ( _i  x.  z ) ) ) )  e.  RR ) )  ->  E. x  e.  CC  ( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  ( ( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) )
438, 15, 35, 42syl12anc 1180 . . . . 5  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  E. x  e.  CC  ( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) )
44 oveq1 5949 . . . . . . . 8  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  ( A  +  x )  =  ( ( y  +  ( _i  x.  z ) )  +  x ) )
4544eleq1d 2424 . . . . . . 7  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
( A  +  x
)  e.  RR  <->  ( (
y  +  ( _i  x.  z ) )  +  x )  e.  RR ) )
46 oveq1 5949 . . . . . . . . 9  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  ( A  -  x )  =  ( ( y  +  ( _i  x.  z ) )  -  x ) )
4746oveq2d 5958 . . . . . . . 8  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
_i  x.  ( A  -  x ) )  =  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) ) )
4847eleq1d 2424 . . . . . . 7  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
( _i  x.  ( A  -  x )
)  e.  RR  <->  ( _i  x.  ( ( y  +  ( _i  x.  z
) )  -  x
) )  e.  RR ) )
4945, 48anbi12d 691 . . . . . 6  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) ) )
5049rexbidv 2640 . . . . 5  |-  ( A  =  ( y  +  ( _i  x.  z
) )  ->  ( E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <->  E. x  e.  CC  ( ( ( y  +  ( _i  x.  z ) )  +  x )  e.  RR  /\  ( _i  x.  (
( y  +  ( _i  x.  z ) )  -  x ) )  e.  RR ) ) )
5143, 50syl5ibrcom 213 . . . 4  |-  ( ( y  e.  RR  /\  z  e.  RR )  ->  ( A  =  ( y  +  ( _i  x.  z ) )  ->  E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) ) )
5251rexlimivv 2748 . . 3  |-  ( E. y  e.  RR  E. z  e.  RR  A  =  ( y  +  ( _i  x.  z
) )  ->  E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )
531, 52syl 15 . 2  |-  ( A  e.  CC  ->  E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )
54 an4 797 . . . 4  |-  ( ( ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  <->  ( (
( A  +  x
)  e.  RR  /\  ( A  +  y
)  e.  RR )  /\  ( ( _i  x.  ( A  -  x ) )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) ) )
55 resubcl 9198 . . . . . . 7  |-  ( ( ( A  +  x
)  e.  RR  /\  ( A  +  y
)  e.  RR )  ->  ( ( A  +  x )  -  ( A  +  y
) )  e.  RR )
56 pnpcan 9173 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( A  +  x
)  -  ( A  +  y ) )  =  ( x  -  y ) )
57563expb 1152 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( ( A  +  x )  -  ( A  +  y ) )  =  ( x  -  y
) )
5857eleq1d 2424 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( A  +  x
)  -  ( A  +  y ) )  e.  RR  <->  ( x  -  y )  e.  RR ) )
5955, 58syl5ib 210 . . . . . 6  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( A  +  x
)  e.  RR  /\  ( A  +  y
)  e.  RR )  ->  ( x  -  y )  e.  RR ) )
60 resubcl 9198 . . . . . . . 8  |-  ( ( ( _i  x.  ( A  -  y )
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  ->  ( ( _i  x.  ( A  -  y ) )  -  ( _i  x.  ( A  -  x )
) )  e.  RR )
6160ancoms 439 . . . . . . 7  |-  ( ( ( _i  x.  ( A  -  x )
)  e.  RR  /\  ( _i  x.  ( A  -  y )
)  e.  RR )  ->  ( ( _i  x.  ( A  -  y ) )  -  ( _i  x.  ( A  -  x )
) )  e.  RR )
623a1i 10 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  _i  e.  CC )
63 subcl 9138 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  y  e.  CC )  ->  ( A  -  y
)  e.  CC )
6463adantrl 696 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( A  -  y )  e.  CC )
65 subcl 9138 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A  -  x
)  e.  CC )
6665adantrr 697 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( A  -  x )  e.  CC )
6762, 64, 66subdid 9322 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( _i  x.  ( ( A  -  y )  -  ( A  -  x )
) )  =  ( ( _i  x.  ( A  -  y )
)  -  ( _i  x.  ( A  -  x ) ) ) )
68 nnncan1 9170 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  y  e.  CC  /\  x  e.  CC )  ->  (
( A  -  y
)  -  ( A  -  x ) )  =  ( x  -  y ) )
69683com23 1157 . . . . . . . . . . 11  |-  ( ( A  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( A  -  y
)  -  ( A  -  x ) )  =  ( x  -  y ) )
70693expb 1152 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( ( A  -  y )  -  ( A  -  x ) )  =  ( x  -  y
) )
7170oveq2d 5958 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( _i  x.  ( ( A  -  y )  -  ( A  -  x )
) )  =  ( _i  x.  ( x  -  y ) ) )
7267, 71eqtr3d 2392 . . . . . . . 8  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
_i  x.  ( A  -  y ) )  -  ( _i  x.  ( A  -  x
) ) )  =  ( _i  x.  (
x  -  y ) ) )
7372eleq1d 2424 . . . . . . 7  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( _i  x.  ( A  -  y )
)  -  ( _i  x.  ( A  -  x ) ) )  e.  RR  <->  ( _i  x.  ( x  -  y
) )  e.  RR ) )
7461, 73syl5ib 210 . . . . . 6  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( _i  x.  ( A  -  x )
)  e.  RR  /\  ( _i  x.  ( A  -  y )
)  e.  RR )  ->  ( _i  x.  ( x  -  y
) )  e.  RR ) )
7559, 74anim12d 546 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( ( A  +  x )  e.  RR  /\  ( A  +  y )  e.  RR )  /\  ( ( _i  x.  ( A  -  x ) )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  -> 
( ( x  -  y )  e.  RR  /\  ( _i  x.  (
x  -  y ) )  e.  RR ) ) )
76 rimul 9824 . . . . . 6  |-  ( ( ( x  -  y
)  e.  RR  /\  ( _i  x.  (
x  -  y ) )  e.  RR )  ->  ( x  -  y )  =  0 )
7776a1i 10 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( x  -  y
)  e.  RR  /\  ( _i  x.  (
x  -  y ) )  e.  RR )  ->  ( x  -  y )  =  0 ) )
78 subeq0 9160 . . . . . . 7  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y )  =  0  <-> 
x  =  y ) )
7978biimpd 198 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y )  =  0  ->  x  =  y ) )
8079adantl 452 . . . . 5  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
x  -  y )  =  0  ->  x  =  y ) )
8175, 77, 803syld 51 . . . 4  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( ( A  +  x )  e.  RR  /\  ( A  +  y )  e.  RR )  /\  ( ( _i  x.  ( A  -  x ) )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
)
8254, 81syl5bi 208 . . 3  |-  ( ( A  e.  CC  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
)
8382ralrimivva 2711 . 2  |-  ( A  e.  CC  ->  A. x  e.  CC  A. y  e.  CC  ( ( ( ( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
)
84 oveq2 5950 . . . . 5  |-  ( x  =  y  ->  ( A  +  x )  =  ( A  +  y ) )
8584eleq1d 2424 . . . 4  |-  ( x  =  y  ->  (
( A  +  x
)  e.  RR  <->  ( A  +  y )  e.  RR ) )
86 oveq2 5950 . . . . . 6  |-  ( x  =  y  ->  ( A  -  x )  =  ( A  -  y ) )
8786oveq2d 5958 . . . . 5  |-  ( x  =  y  ->  (
_i  x.  ( A  -  x ) )  =  ( _i  x.  ( A  -  y )
) )
8887eleq1d 2424 . . . 4  |-  ( x  =  y  ->  (
( _i  x.  ( A  -  x )
)  e.  RR  <->  ( _i  x.  ( A  -  y
) )  e.  RR ) )
8985, 88anbi12d 691 . . 3  |-  ( x  =  y  ->  (
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y )
)  e.  RR ) ) )
9089reu4 3035 . 2  |-  ( E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  <-> 
( E. x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR )  /\  A. x  e.  CC  A. y  e.  CC  ( ( ( ( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR )  /\  ( ( A  +  y )  e.  RR  /\  ( _i  x.  ( A  -  y ) )  e.  RR ) )  ->  x  =  y )
) )
9153, 83, 90sylanbrc 645 1  |-  ( A  e.  CC  ->  E! x  e.  CC  (
( A  +  x
)  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   A.wral 2619   E.wrex 2620   E!wreu 2621  (class class class)co 5942   CCcc 8822   RRcr 8823   0cc0 8824   1c1 8825   _ici 8826    + caddc 8827    x. cmul 8829    - cmin 9124   -ucneg 9125
This theorem is referenced by:  cjth  11678  cjf  11679  remim  11692
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-po 4393  df-so 4394  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-riota 6388  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511
  Copyright terms: Public domain W3C validator