MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cjval Unicode version

Theorem cjval 11587
Description: The value of the conjugate of a complex number. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cjval  |-  ( A  e.  CC  ->  (
* `  A )  =  ( iota_ x  e.  CC ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) ) )
Distinct variable group:    x, A

Proof of Theorem cjval
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 oveq1 5865 . . . . 5  |-  ( y  =  A  ->  (
y  +  x )  =  ( A  +  x ) )
21eleq1d 2349 . . . 4  |-  ( y  =  A  ->  (
( y  +  x
)  e.  RR  <->  ( A  +  x )  e.  RR ) )
3 oveq1 5865 . . . . . 6  |-  ( y  =  A  ->  (
y  -  x )  =  ( A  -  x ) )
43oveq2d 5874 . . . . 5  |-  ( y  =  A  ->  (
_i  x.  ( y  -  x ) )  =  ( _i  x.  ( A  -  x )
) )
54eleq1d 2349 . . . 4  |-  ( y  =  A  ->  (
( _i  x.  (
y  -  x ) )  e.  RR  <->  ( _i  x.  ( A  -  x
) )  e.  RR ) )
62, 5anbi12d 691 . . 3  |-  ( y  =  A  ->  (
( ( y  +  x )  e.  RR  /\  ( _i  x.  (
y  -  x ) )  e.  RR )  <-> 
( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x )
)  e.  RR ) ) )
76riotabidv 6306 . 2  |-  ( y  =  A  ->  ( iota_ x  e.  CC ( ( y  +  x
)  e.  RR  /\  ( _i  x.  (
y  -  x ) )  e.  RR ) )  =  ( iota_ x  e.  CC ( ( A  +  x )  e.  RR  /\  (
_i  x.  ( A  -  x ) )  e.  RR ) ) )
8 df-cj 11584 . 2  |-  *  =  ( y  e.  CC  |->  ( iota_ x  e.  CC ( ( y  +  x )  e.  RR  /\  ( _i  x.  (
y  -  x ) )  e.  RR ) ) )
9 riotaex 6308 . 2  |-  ( iota_ x  e.  CC ( ( A  +  x )  e.  RR  /\  (
_i  x.  ( A  -  x ) )  e.  RR ) )  e. 
_V
107, 8, 9fvmpt 5602 1  |-  ( A  e.  CC  ->  (
* `  A )  =  ( iota_ x  e.  CC ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   ` cfv 5255  (class class class)co 5858   iota_crio 6297   CCcc 8735   RRcr 8736   _ici 8739    + caddc 8740    x. cmul 8742    - cmin 9037   *ccj 11581
This theorem is referenced by:  cjth  11588  remim  11602
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-iota 5219  df-fun 5257  df-fv 5263  df-ov 5861  df-riota 6304  df-cj 11584
  Copyright terms: Public domain W3C validator