MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  class2set Unicode version

Theorem class2set 4194
Description: Construct, from any class  A, a set equal to it when the class exists and equal to the empty set when the class is proper. This theorem shows that the constructed set always exists. (Contributed by NM, 16-Oct-2003.)
Assertion
Ref Expression
class2set  |-  { x  e.  A  |  A  e.  _V }  e.  _V
Distinct variable group:    x, A

Proof of Theorem class2set
StepHypRef Expression
1 rabexg 4180 . 2  |-  ( A  e.  _V  ->  { x  e.  A  |  A  e.  _V }  e.  _V )
2 simpl 443 . . . . 5  |-  ( ( -.  A  e.  _V  /\  x  e.  A )  ->  -.  A  e.  _V )
32nrexdv 2659 . . . 4  |-  ( -.  A  e.  _V  ->  -. 
E. x  e.  A  A  e.  _V )
4 rabn0 3487 . . . . 5  |-  ( { x  e.  A  |  A  e.  _V }  =/=  (/)  <->  E. x  e.  A  A  e.  _V )
54necon1bbii 2511 . . . 4  |-  ( -. 
E. x  e.  A  A  e.  _V  <->  { x  e.  A  |  A  e.  _V }  =  (/) )
63, 5sylib 188 . . 3  |-  ( -.  A  e.  _V  ->  { x  e.  A  |  A  e.  _V }  =  (/) )
7 0ex 4166 . . 3  |-  (/)  e.  _V
86, 7syl6eqel 2384 . 2  |-  ( -.  A  e.  _V  ->  { x  e.  A  |  A  e.  _V }  e.  _V )
91, 8pm2.61i 156 1  |-  { x  e.  A  |  A  e.  _V }  e.  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    = wceq 1632    e. wcel 1696   E.wrex 2557   {crab 2560   _Vcvv 2801   (/)c0 3468
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-in 3172  df-ss 3179  df-nul 3469
  Copyright terms: Public domain W3C validator