MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglbss Unicode version

Theorem clatglbss 14324
Description: Subset law for greatest lower bound. (Contributed by Mario Carneiro, 16-Apr-2014.)
Hypotheses
Ref Expression
clatglb.b  |-  B  =  ( Base `  K
)
clatglb.l  |-  .<_  =  ( le `  K )
clatglb.g  |-  G  =  ( glb `  K
)
Assertion
Ref Expression
clatglbss  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  ( G `  T )  .<_  ( G `  S
) )

Proof of Theorem clatglbss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 simpl1 958 . . . 4  |-  ( ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  /\  y  e.  S )  ->  K  e.  CLat )
2 simpl2 959 . . . 4  |-  ( ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  /\  y  e.  S )  ->  T  C_  B )
3 simp3 957 . . . . 5  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  S  C_  T )
43sselda 3256 . . . 4  |-  ( ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  /\  y  e.  S )  ->  y  e.  T )
5 clatglb.b . . . . 5  |-  B  =  ( Base `  K
)
6 clatglb.l . . . . 5  |-  .<_  =  ( le `  K )
7 clatglb.g . . . . 5  |-  G  =  ( glb `  K
)
85, 6, 7clatglble 14322 . . . 4  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  y  e.  T )  ->  ( G `  T )  .<_  y )
91, 2, 4, 8syl3anc 1182 . . 3  |-  ( ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  /\  y  e.  S )  ->  ( G `  T
)  .<_  y )
109ralrimiva 2702 . 2  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  A. y  e.  S  ( G `  T )  .<_  y )
11 simp1 955 . . 3  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  K  e.  CLat )
125, 7clatglbcl 14311 . . . 4  |-  ( ( K  e.  CLat  /\  T  C_  B )  ->  ( G `  T )  e.  B )
13123adant3 975 . . 3  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  ( G `  T )  e.  B )
14 sstr 3263 . . . . 5  |-  ( ( S  C_  T  /\  T  C_  B )  ->  S  C_  B )
1514ancoms 439 . . . 4  |-  ( ( T  C_  B  /\  S  C_  T )  ->  S  C_  B )
16153adant1 973 . . 3  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  S  C_  B )
175, 6, 7clatleglb 14323 . . 3  |-  ( ( K  e.  CLat  /\  ( G `  T )  e.  B  /\  S  C_  B )  ->  (
( G `  T
)  .<_  ( G `  S )  <->  A. y  e.  S  ( G `  T )  .<_  y ) )
1811, 13, 16, 17syl3anc 1182 . 2  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  (
( G `  T
)  .<_  ( G `  S )  <->  A. y  e.  S  ( G `  T )  .<_  y ) )
1910, 18mpbird 223 1  |-  ( ( K  e.  CLat  /\  T  C_  B  /\  S  C_  T )  ->  ( G `  T )  .<_  ( G `  S
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710   A.wral 2619    C_ wss 3228   class class class wbr 4102   ` cfv 5334   Basecbs 13239   lecple 13306   glbcglb 14170   CLatccla 14306
This theorem is referenced by:  dochss  31607
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-id 4388  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-undef 6382  df-riota 6388  df-poset 14173  df-glb 14202  df-join 14203  df-meet 14204  df-lat 14245  df-clat 14307
  Copyright terms: Public domain W3C validator