MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldcls Unicode version

Theorem cldcls 16779
Description: A closed subset equals its own closure. (Contributed by NM, 15-Mar-2007.)
Assertion
Ref Expression
cldcls  |-  ( S  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  S )  =  S )

Proof of Theorem cldcls
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 cldrcl 16763 . . 3  |-  ( S  e.  ( Clsd `  J
)  ->  J  e.  Top )
2 eqid 2283 . . . 4  |-  U. J  =  U. J
32cldss 16766 . . 3  |-  ( S  e.  ( Clsd `  J
)  ->  S  C_  U. J
)
42clsval 16774 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
51, 3, 4syl2anc 642 . 2  |-  ( S  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  S )  =  |^| { x  e.  ( Clsd `  J )  |  S  C_  x } )
6 intmin 3882 . 2  |-  ( S  e.  ( Clsd `  J
)  ->  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x }  =  S
)
75, 6eqtrd 2315 1  |-  ( S  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  S )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   {crab 2547    C_ wss 3152   U.cuni 3827   |^|cint 3862   ` cfv 5255   Topctop 16631   Clsdccld 16753   clsccl 16755
This theorem is referenced by:  iscld3  16801  clsss2  16809  cncls2  17002  lmcld  17031  fclscmp  17725  metnrmlem1a  18362  lebnumlem1  18459  cmetss  18740  minveclem4  18796
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-top 16636  df-cld 16756  df-cls 16758
  Copyright terms: Public domain W3C validator