MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldllycmp Unicode version

Theorem cldllycmp 17472
Description: A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest 17463.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
cldllycmp  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( Jt  A
)  e. 𝑛Locally  Comp )

Proof of Theorem cldllycmp
Dummy variables  u  v  w  x  y 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 17450 . . 3  |-  ( J  e. 𝑛Locally 
Comp  ->  J  e.  Top )
2 resttop 17139 . . 3  |-  ( ( J  e.  Top  /\  A  e.  ( Clsd `  J ) )  -> 
( Jt  A )  e.  Top )
31, 2sylan 458 . 2  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( Jt  A
)  e.  Top )
4 elrest 13575 . . . 4  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( x  e.  ( Jt  A )  <->  E. u  e.  J  x  =  ( u  i^i  A ) ) )
5 simpll 731 . . . . . . . . . 10  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  J  e. 𝑛Locally  Comp )
6 simprl 733 . . . . . . . . . 10  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  u  e.  J
)
7 inss1 3497 . . . . . . . . . . 11  |-  ( u  i^i  A )  C_  u
8 simprr 734 . . . . . . . . . . 11  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  y  e.  ( u  i^i  A ) )
97, 8sseldi 3282 . . . . . . . . . 10  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  y  e.  u
)
10 nlly2i 17453 . . . . . . . . . 10  |-  ( ( J  e. 𝑛Locally  Comp  /\  u  e.  J  /\  y  e.  u
)  ->  E. s  e.  ~P  u E. w  e.  J  ( y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp )
)
115, 6, 9, 10syl3anc 1184 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  E. s  e.  ~P  u E. w  e.  J  ( y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e. 
Comp ) )
123ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( Jt  A )  e.  Top )
131ad3antrrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  J  e.  Top )
14 simpllr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  A  e.  ( Clsd `  J ) )
15 simprlr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  w  e.  J )
16 elrestr 13576 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  Top  /\  A  e.  ( Clsd `  J )  /\  w  e.  J )  ->  (
w  i^i  A )  e.  ( Jt  A ) )
1713, 14, 15, 16syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( w  i^i  A
)  e.  ( Jt  A ) )
18 simprr1 1005 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
y  e.  w )
19 inss2 3498 . . . . . . . . . . . . . . . . 17  |-  ( u  i^i  A )  C_  A
20 simplrr 738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
y  e.  ( u  i^i  A ) )
2119, 20sseldi 3282 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
y  e.  A )
22 elin 3466 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( w  i^i 
A )  <->  ( y  e.  w  /\  y  e.  A ) )
2318, 21, 22sylanbrc 646 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
y  e.  ( w  i^i  A ) )
24 opnneip 17099 . . . . . . . . . . . . . . 15  |-  ( ( ( Jt  A )  e.  Top  /\  ( w  i^i  A
)  e.  ( Jt  A )  /\  y  e.  ( w  i^i  A
) )  ->  (
w  i^i  A )  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) )
2512, 17, 23, 24syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( w  i^i  A
)  e.  ( ( nei `  ( Jt  A ) ) `  {
y } ) )
26 simprr2 1006 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  w  C_  s )
27 ssrin 3502 . . . . . . . . . . . . . . 15  |-  ( w 
C_  s  ->  (
w  i^i  A )  C_  ( s  i^i  A
) )
2826, 27syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( w  i^i  A
)  C_  ( s  i^i  A ) )
29 inss2 3498 . . . . . . . . . . . . . . 15  |-  ( s  i^i  A )  C_  A
30 eqid 2380 . . . . . . . . . . . . . . . . . 18  |-  U. J  =  U. J
3130cldss 17009 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ( Clsd `  J
)  ->  A  C_  U. J
)
3214, 31syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  A  C_  U. J )
3330restuni 17141 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  Top  /\  A  C_  U. J )  ->  A  =  U. ( Jt  A ) )
3413, 32, 33syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  A  =  U. ( Jt  A ) )
3529, 34syl5sseq 3332 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  C_  U. ( Jt  A ) )
36 eqid 2380 . . . . . . . . . . . . . . 15  |-  U. ( Jt  A )  =  U. ( Jt  A )
3736ssnei2 17096 . . . . . . . . . . . . . 14  |-  ( ( ( ( Jt  A )  e.  Top  /\  (
w  i^i  A )  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) )  /\  ( ( w  i^i  A ) 
C_  ( s  i^i 
A )  /\  (
s  i^i  A )  C_ 
U. ( Jt  A ) ) )  ->  (
s  i^i  A )  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) )
3812, 25, 28, 35, 37syl22anc 1185 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  e.  ( ( nei `  ( Jt  A ) ) `  {
y } ) )
39 simprll 739 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
s  e.  ~P u
)
4039elpwid 3744 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
s  C_  u )
41 ssrin 3502 . . . . . . . . . . . . . . 15  |-  ( s 
C_  u  ->  (
s  i^i  A )  C_  ( u  i^i  A
) )
4240, 41syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  C_  ( u  i^i  A ) )
43 vex 2895 . . . . . . . . . . . . . . . 16  |-  s  e. 
_V
4443inex1 4278 . . . . . . . . . . . . . . 15  |-  ( s  i^i  A )  e. 
_V
4544elpw 3741 . . . . . . . . . . . . . 14  |-  ( ( s  i^i  A )  e.  ~P ( u  i^i  A )  <->  ( s  i^i  A )  C_  (
u  i^i  A )
)
4642, 45sylibr 204 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  e.  ~P (
u  i^i  A )
)
47 elin 3466 . . . . . . . . . . . . 13  |-  ( ( s  i^i  A )  e.  ( ( ( nei `  ( Jt  A ) ) `  {
y } )  i^i 
~P ( u  i^i 
A ) )  <->  ( (
s  i^i  A )  e.  ( ( nei `  ( Jt  A ) ) `  { y } )  /\  ( s  i^i 
A )  e.  ~P ( u  i^i  A ) ) )
4838, 46, 47sylanbrc 646 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) )
4929a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  C_  A )
50 restabs 17144 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  ( s  i^i  A
)  C_  A  /\  A  e.  ( Clsd `  J ) )  -> 
( ( Jt  A )t  ( s  i^i  A ) )  =  ( Jt  ( s  i^i  A ) ) )
5113, 49, 14, 50syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  A )t  ( s  i^i  A ) )  =  ( Jt  ( s  i^i  A ) ) )
52 inss1 3497 . . . . . . . . . . . . . . . 16  |-  ( s  i^i  A )  C_  s
5352a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  C_  s )
54 restabs 17144 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  ( s  i^i  A
)  C_  s  /\  s  e.  ~P u
)  ->  ( ( Jt  s )t  ( s  i^i 
A ) )  =  ( Jt  ( s  i^i 
A ) ) )
5513, 53, 39, 54syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  s )t  ( s  i^i  A ) )  =  ( Jt  ( s  i^i  A ) ) )
5651, 55eqtr4d 2415 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  A )t  ( s  i^i  A ) )  =  ( ( Jt  s )t  ( s  i^i 
A ) ) )
57 simprr3 1007 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( Jt  s )  e. 
Comp )
58 incom 3469 . . . . . . . . . . . . . . 15  |-  ( s  i^i  A )  =  ( A  i^i  s
)
59 eqid 2380 . . . . . . . . . . . . . . . . 17  |-  ( A  i^i  s )  =  ( A  i^i  s
)
60 ineq1 3471 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  A  ->  (
v  i^i  s )  =  ( A  i^i  s ) )
6160eqeq2d 2391 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  A  ->  (
( A  i^i  s
)  =  ( v  i^i  s )  <->  ( A  i^i  s )  =  ( A  i^i  s ) ) )
6261rspcev 2988 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ( Clsd `  J )  /\  ( A  i^i  s )  =  ( A  i^i  s
) )  ->  E. v  e.  ( Clsd `  J
) ( A  i^i  s )  =  ( v  i^i  s ) )
6314, 59, 62sylancl 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  E. v  e.  ( Clsd `  J ) ( A  i^i  s )  =  ( v  i^i  s ) )
64 simplrl 737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  u  e.  J )
65 elssuni 3978 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  J  ->  u  C_ 
U. J )
6664, 65syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  u  C_  U. J )
6740, 66sstrd 3294 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
s  C_  U. J )
6830restcld 17151 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  s  C_  U. J )  ->  ( ( A  i^i  s )  e.  ( Clsd `  ( Jt  s ) )  <->  E. v  e.  ( Clsd `  J
) ( A  i^i  s )  =  ( v  i^i  s ) ) )
6913, 67, 68syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( A  i^i  s )  e.  (
Clsd `  ( Jt  s
) )  <->  E. v  e.  ( Clsd `  J
) ( A  i^i  s )  =  ( v  i^i  s ) ) )
7063, 69mpbird 224 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( A  i^i  s
)  e.  ( Clsd `  ( Jt  s ) ) )
7158, 70syl5eqel 2464 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  e.  ( Clsd `  ( Jt  s ) ) )
72 cmpcld 17380 . . . . . . . . . . . . . 14  |-  ( ( ( Jt  s )  e. 
Comp  /\  ( s  i^i 
A )  e.  (
Clsd `  ( Jt  s
) ) )  -> 
( ( Jt  s )t  ( s  i^i  A ) )  e.  Comp )
7357, 71, 72syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  s )t  ( s  i^i  A ) )  e.  Comp )
7456, 73eqeltrd 2454 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  A )t  ( s  i^i  A ) )  e.  Comp )
75 oveq2 6021 . . . . . . . . . . . . . 14  |-  ( v  =  ( s  i^i 
A )  ->  (
( Jt  A )t  v )  =  ( ( Jt  A )t  ( s  i^i  A ) ) )
7675eleq1d 2446 . . . . . . . . . . . . 13  |-  ( v  =  ( s  i^i 
A )  ->  (
( ( Jt  A )t  v )  e.  Comp  <->  ( ( Jt  A )t  ( s  i^i 
A ) )  e. 
Comp ) )
7776rspcev 2988 . . . . . . . . . . . 12  |-  ( ( ( s  i^i  A
)  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) )  /\  ( ( Jt  A )t  ( s  i^i  A
) )  e.  Comp )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
7848, 74, 77syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  E. v  e.  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
7978expr 599 . . . . . . . . . 10  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( s  e.  ~P u  /\  w  e.  J
) )  ->  (
( y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e. 
Comp )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
)
8079rexlimdvva 2773 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  ( E. s  e.  ~P  u E. w  e.  J  ( y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
)
8111, 80mpd 15 . . . . . . . 8  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
8281anassrs 630 . . . . . . 7  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  u  e.  J
)  /\  y  e.  ( u  i^i  A ) )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
8382ralrimiva 2725 . . . . . 6  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  u  e.  J )  ->  A. y  e.  ( u  i^i  A
) E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
84 pweq 3738 . . . . . . . . 9  |-  ( x  =  ( u  i^i 
A )  ->  ~P x  =  ~P (
u  i^i  A )
)
8584ineq2d 3478 . . . . . . . 8  |-  ( x  =  ( u  i^i 
A )  ->  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x )  =  ( ( ( nei `  ( Jt  A ) ) `  {
y } )  i^i 
~P ( u  i^i 
A ) ) )
8685rexeqdv 2847 . . . . . . 7  |-  ( x  =  ( u  i^i 
A )  ->  ( E. v  e.  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp  <->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
)
8786raleqbi1dv 2848 . . . . . 6  |-  ( x  =  ( u  i^i 
A )  ->  ( A. y  e.  x  E. v  e.  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp  <->  A. y  e.  ( u  i^i  A
) E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
)
8883, 87syl5ibrcom 214 . . . . 5  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  u  e.  J )  ->  (
x  =  ( u  i^i  A )  ->  A. y  e.  x  E. v  e.  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
)
8988rexlimdva 2766 . . . 4  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( E. u  e.  J  x  =  ( u  i^i 
A )  ->  A. y  e.  x  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
)
904, 89sylbid 207 . . 3  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( x  e.  ( Jt  A )  ->  A. y  e.  x  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
)
9190ralrimiv 2724 . 2  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  A. x  e.  ( Jt  A ) A. y  e.  x  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
92 isnlly 17446 . 2  |-  ( ( Jt  A )  e. 𝑛Locally  Comp  <->  ( ( Jt  A )  e.  Top  /\ 
A. x  e.  ( Jt  A ) A. y  e.  x  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
)
933, 91, 92sylanbrc 646 1  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( Jt  A
)  e. 𝑛Locally  Comp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2642   E.wrex 2643    i^i cin 3255    C_ wss 3256   ~Pcpw 3735   {csn 3750   U.cuni 3950   ` cfv 5387  (class class class)co 6013   ↾t crest 13568   Topctop 16874   Clsdccld 16996   neicnei 17077   Compccmp 17364  𝑛Locally cnlly 17442
This theorem is referenced by:  rellycmp  18846
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-ral 2647  df-rex 2648  df-reu 2649  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-int 3986  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-1st 6281  df-2nd 6282  df-recs 6562  df-rdg 6597  df-1o 6653  df-oadd 6657  df-er 6834  df-en 7039  df-dom 7040  df-fin 7042  df-fi 7344  df-rest 13570  df-topgen 13587  df-top 16879  df-bases 16881  df-topon 16882  df-cld 16999  df-nei 17078  df-cmp 17365  df-nlly 17444
  Copyright terms: Public domain W3C validator