MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldllycmp Structured version   Unicode version

Theorem cldllycmp 17550
Description: A closed subspace of a locally compact space is also locally compact. (The analogous result for open subspaces follows from the more general nllyrest 17541.) (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
cldllycmp  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( Jt  A
)  e. 𝑛Locally  Comp )

Proof of Theorem cldllycmp
Dummy variables  u  v  w  x  y 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 17528 . . 3  |-  ( J  e. 𝑛Locally 
Comp  ->  J  e.  Top )
2 resttop 17216 . . 3  |-  ( ( J  e.  Top  /\  A  e.  ( Clsd `  J ) )  -> 
( Jt  A )  e.  Top )
31, 2sylan 458 . 2  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( Jt  A
)  e.  Top )
4 elrest 13647 . . . 4  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( x  e.  ( Jt  A )  <->  E. u  e.  J  x  =  ( u  i^i  A ) ) )
5 simpll 731 . . . . . . . . . 10  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  J  e. 𝑛Locally  Comp )
6 simprl 733 . . . . . . . . . 10  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  u  e.  J
)
7 inss1 3553 . . . . . . . . . . 11  |-  ( u  i^i  A )  C_  u
8 simprr 734 . . . . . . . . . . 11  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  y  e.  ( u  i^i  A ) )
97, 8sseldi 3338 . . . . . . . . . 10  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  y  e.  u
)
10 nlly2i 17531 . . . . . . . . . 10  |-  ( ( J  e. 𝑛Locally  Comp  /\  u  e.  J  /\  y  e.  u
)  ->  E. s  e.  ~P  u E. w  e.  J  ( y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp )
)
115, 6, 9, 10syl3anc 1184 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  E. s  e.  ~P  u E. w  e.  J  ( y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e. 
Comp ) )
123ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( Jt  A )  e.  Top )
131ad3antrrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  J  e.  Top )
14 simpllr 736 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  A  e.  ( Clsd `  J ) )
15 simprlr 740 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  w  e.  J )
16 elrestr 13648 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  Top  /\  A  e.  ( Clsd `  J )  /\  w  e.  J )  ->  (
w  i^i  A )  e.  ( Jt  A ) )
1713, 14, 15, 16syl3anc 1184 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( w  i^i  A
)  e.  ( Jt  A ) )
18 simprr1 1005 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
y  e.  w )
19 inss2 3554 . . . . . . . . . . . . . . . . 17  |-  ( u  i^i  A )  C_  A
20 simplrr 738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
y  e.  ( u  i^i  A ) )
2119, 20sseldi 3338 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
y  e.  A )
22 elin 3522 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( w  i^i 
A )  <->  ( y  e.  w  /\  y  e.  A ) )
2318, 21, 22sylanbrc 646 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
y  e.  ( w  i^i  A ) )
24 opnneip 17175 . . . . . . . . . . . . . . 15  |-  ( ( ( Jt  A )  e.  Top  /\  ( w  i^i  A
)  e.  ( Jt  A )  /\  y  e.  ( w  i^i  A
) )  ->  (
w  i^i  A )  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) )
2512, 17, 23, 24syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( w  i^i  A
)  e.  ( ( nei `  ( Jt  A ) ) `  {
y } ) )
26 simprr2 1006 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  w  C_  s )
27 ssrin 3558 . . . . . . . . . . . . . . 15  |-  ( w 
C_  s  ->  (
w  i^i  A )  C_  ( s  i^i  A
) )
2826, 27syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( w  i^i  A
)  C_  ( s  i^i  A ) )
29 inss2 3554 . . . . . . . . . . . . . . 15  |-  ( s  i^i  A )  C_  A
30 eqid 2435 . . . . . . . . . . . . . . . . . 18  |-  U. J  =  U. J
3130cldss 17085 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ( Clsd `  J
)  ->  A  C_  U. J
)
3214, 31syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  A  C_  U. J )
3330restuni 17218 . . . . . . . . . . . . . . . 16  |-  ( ( J  e.  Top  /\  A  C_  U. J )  ->  A  =  U. ( Jt  A ) )
3413, 32, 33syl2anc 643 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  A  =  U. ( Jt  A ) )
3529, 34syl5sseq 3388 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  C_  U. ( Jt  A ) )
36 eqid 2435 . . . . . . . . . . . . . . 15  |-  U. ( Jt  A )  =  U. ( Jt  A )
3736ssnei2 17172 . . . . . . . . . . . . . 14  |-  ( ( ( ( Jt  A )  e.  Top  /\  (
w  i^i  A )  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) )  /\  ( ( w  i^i  A ) 
C_  ( s  i^i 
A )  /\  (
s  i^i  A )  C_ 
U. ( Jt  A ) ) )  ->  (
s  i^i  A )  e.  ( ( nei `  ( Jt  A ) ) `  { y } ) )
3812, 25, 28, 35, 37syl22anc 1185 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  e.  ( ( nei `  ( Jt  A ) ) `  {
y } ) )
39 simprll 739 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
s  e.  ~P u
)
4039elpwid 3800 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
s  C_  u )
41 ssrin 3558 . . . . . . . . . . . . . . 15  |-  ( s 
C_  u  ->  (
s  i^i  A )  C_  ( u  i^i  A
) )
4240, 41syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  C_  ( u  i^i  A ) )
43 vex 2951 . . . . . . . . . . . . . . . 16  |-  s  e. 
_V
4443inex1 4336 . . . . . . . . . . . . . . 15  |-  ( s  i^i  A )  e. 
_V
4544elpw 3797 . . . . . . . . . . . . . 14  |-  ( ( s  i^i  A )  e.  ~P ( u  i^i  A )  <->  ( s  i^i  A )  C_  (
u  i^i  A )
)
4642, 45sylibr 204 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  e.  ~P (
u  i^i  A )
)
47 elin 3522 . . . . . . . . . . . . 13  |-  ( ( s  i^i  A )  e.  ( ( ( nei `  ( Jt  A ) ) `  {
y } )  i^i 
~P ( u  i^i 
A ) )  <->  ( (
s  i^i  A )  e.  ( ( nei `  ( Jt  A ) ) `  { y } )  /\  ( s  i^i 
A )  e.  ~P ( u  i^i  A ) ) )
4838, 46, 47sylanbrc 646 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) )
4929a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  C_  A )
50 restabs 17221 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  ( s  i^i  A
)  C_  A  /\  A  e.  ( Clsd `  J ) )  -> 
( ( Jt  A )t  ( s  i^i  A ) )  =  ( Jt  ( s  i^i  A ) ) )
5113, 49, 14, 50syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  A )t  ( s  i^i  A ) )  =  ( Jt  ( s  i^i  A ) ) )
52 inss1 3553 . . . . . . . . . . . . . . . 16  |-  ( s  i^i  A )  C_  s
5352a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  C_  s )
54 restabs 17221 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  ( s  i^i  A
)  C_  s  /\  s  e.  ~P u
)  ->  ( ( Jt  s )t  ( s  i^i 
A ) )  =  ( Jt  ( s  i^i 
A ) ) )
5513, 53, 39, 54syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  s )t  ( s  i^i  A ) )  =  ( Jt  ( s  i^i  A ) ) )
5651, 55eqtr4d 2470 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  A )t  ( s  i^i  A ) )  =  ( ( Jt  s )t  ( s  i^i 
A ) ) )
57 simprr3 1007 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( Jt  s )  e. 
Comp )
58 incom 3525 . . . . . . . . . . . . . . 15  |-  ( s  i^i  A )  =  ( A  i^i  s
)
59 eqid 2435 . . . . . . . . . . . . . . . . 17  |-  ( A  i^i  s )  =  ( A  i^i  s
)
60 ineq1 3527 . . . . . . . . . . . . . . . . . . 19  |-  ( v  =  A  ->  (
v  i^i  s )  =  ( A  i^i  s ) )
6160eqeq2d 2446 . . . . . . . . . . . . . . . . . 18  |-  ( v  =  A  ->  (
( A  i^i  s
)  =  ( v  i^i  s )  <->  ( A  i^i  s )  =  ( A  i^i  s ) ) )
6261rspcev 3044 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ( Clsd `  J )  /\  ( A  i^i  s )  =  ( A  i^i  s
) )  ->  E. v  e.  ( Clsd `  J
) ( A  i^i  s )  =  ( v  i^i  s ) )
6314, 59, 62sylancl 644 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  E. v  e.  ( Clsd `  J ) ( A  i^i  s )  =  ( v  i^i  s ) )
64 simplrl 737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  u  e.  J )
65 elssuni 4035 . . . . . . . . . . . . . . . . . . 19  |-  ( u  e.  J  ->  u  C_ 
U. J )
6664, 65syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  u  C_  U. J )
6740, 66sstrd 3350 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
s  C_  U. J )
6830restcld 17228 . . . . . . . . . . . . . . . . 17  |-  ( ( J  e.  Top  /\  s  C_  U. J )  ->  ( ( A  i^i  s )  e.  ( Clsd `  ( Jt  s ) )  <->  E. v  e.  ( Clsd `  J
) ( A  i^i  s )  =  ( v  i^i  s ) ) )
6913, 67, 68syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( A  i^i  s )  e.  (
Clsd `  ( Jt  s
) )  <->  E. v  e.  ( Clsd `  J
) ( A  i^i  s )  =  ( v  i^i  s ) ) )
7063, 69mpbird 224 . . . . . . . . . . . . . . 15  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( A  i^i  s
)  e.  ( Clsd `  ( Jt  s ) ) )
7158, 70syl5eqel 2519 . . . . . . . . . . . . . 14  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( s  i^i  A
)  e.  ( Clsd `  ( Jt  s ) ) )
72 cmpcld 17457 . . . . . . . . . . . . . 14  |-  ( ( ( Jt  s )  e. 
Comp  /\  ( s  i^i 
A )  e.  (
Clsd `  ( Jt  s
) ) )  -> 
( ( Jt  s )t  ( s  i^i  A ) )  e.  Comp )
7357, 71, 72syl2anc 643 . . . . . . . . . . . . 13  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  s )t  ( s  i^i  A ) )  e.  Comp )
7456, 73eqeltrd 2509 . . . . . . . . . . . 12  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  -> 
( ( Jt  A )t  ( s  i^i  A ) )  e.  Comp )
75 oveq2 6081 . . . . . . . . . . . . . 14  |-  ( v  =  ( s  i^i 
A )  ->  (
( Jt  A )t  v )  =  ( ( Jt  A )t  ( s  i^i  A ) ) )
7675eleq1d 2501 . . . . . . . . . . . . 13  |-  ( v  =  ( s  i^i 
A )  ->  (
( ( Jt  A )t  v )  e.  Comp  <->  ( ( Jt  A )t  ( s  i^i 
A ) )  e. 
Comp ) )
7776rspcev 3044 . . . . . . . . . . . 12  |-  ( ( ( s  i^i  A
)  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) )  /\  ( ( Jt  A )t  ( s  i^i  A
) )  e.  Comp )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
7848, 74, 77syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( ( s  e. 
~P u  /\  w  e.  J )  /\  (
y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp ) ) )  ->  E. v  e.  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
7978expr 599 . . . . . . . . . 10  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  ( u  e.  J  /\  y  e.  ( u  i^i  A
) ) )  /\  ( s  e.  ~P u  /\  w  e.  J
) )  ->  (
( y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e. 
Comp )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
)
8079rexlimdvva 2829 . . . . . . . . 9  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  ( E. s  e.  ~P  u E. w  e.  J  ( y  e.  w  /\  w  C_  s  /\  ( Jt  s )  e.  Comp )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
)
8111, 80mpd 15 . . . . . . . 8  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  (
u  e.  J  /\  y  e.  ( u  i^i  A ) ) )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
8281anassrs 630 . . . . . . 7  |-  ( ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J ) )  /\  u  e.  J
)  /\  y  e.  ( u  i^i  A ) )  ->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
8382ralrimiva 2781 . . . . . 6  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  u  e.  J )  ->  A. y  e.  ( u  i^i  A
) E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
84 pweq 3794 . . . . . . . . 9  |-  ( x  =  ( u  i^i 
A )  ->  ~P x  =  ~P (
u  i^i  A )
)
8584ineq2d 3534 . . . . . . . 8  |-  ( x  =  ( u  i^i 
A )  ->  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x )  =  ( ( ( nei `  ( Jt  A ) ) `  {
y } )  i^i 
~P ( u  i^i 
A ) ) )
8685rexeqdv 2903 . . . . . . 7  |-  ( x  =  ( u  i^i 
A )  ->  ( E. v  e.  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp  <->  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
)
8786raleqbi1dv 2904 . . . . . 6  |-  ( x  =  ( u  i^i 
A )  ->  ( A. y  e.  x  E. v  e.  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp  <->  A. y  e.  ( u  i^i  A
) E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P ( u  i^i  A ) ) ( ( Jt  A )t  v )  e.  Comp )
)
8883, 87syl5ibrcom 214 . . . . 5  |-  ( ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J
) )  /\  u  e.  J )  ->  (
x  =  ( u  i^i  A )  ->  A. y  e.  x  E. v  e.  (
( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
)
8988rexlimdva 2822 . . . 4  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( E. u  e.  J  x  =  ( u  i^i 
A )  ->  A. y  e.  x  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
)
904, 89sylbid 207 . . 3  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( x  e.  ( Jt  A )  ->  A. y  e.  x  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
)
9190ralrimiv 2780 . 2  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  A. x  e.  ( Jt  A ) A. y  e.  x  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
92 isnlly 17524 . 2  |-  ( ( Jt  A )  e. 𝑛Locally  Comp  <->  ( ( Jt  A )  e.  Top  /\ 
A. x  e.  ( Jt  A ) A. y  e.  x  E. v  e.  ( ( ( nei `  ( Jt  A ) ) `  { y } )  i^i  ~P x ) ( ( Jt  A )t  v )  e.  Comp )
)
933, 91, 92sylanbrc 646 1  |-  ( ( J  e. 𝑛Locally  Comp  /\  A  e.  ( Clsd `  J )
)  ->  ( Jt  A
)  e. 𝑛Locally  Comp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   A.wral 2697   E.wrex 2698    i^i cin 3311    C_ wss 3312   ~Pcpw 3791   {csn 3806   U.cuni 4007   ` cfv 5446  (class class class)co 6073   ↾t crest 13640   Topctop 16950   Clsdccld 17072   neicnei 17153   Compccmp 17441  𝑛Locally cnlly 17520
This theorem is referenced by:  rellycmp  18974
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-en 7102  df-dom 7103  df-fin 7105  df-fi 7408  df-rest 13642  df-topgen 13659  df-top 16955  df-bases 16957  df-topon 16958  df-cld 17075  df-nei 17154  df-cmp 17442  df-nlly 17522
  Copyright terms: Public domain W3C validator