MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cldval Structured version   Unicode version

Theorem cldval 17079
Description: The set of closed sets of a topology. (Note that the set of open sets is just the topology itself, so we don't have a separate definition.) (Contributed by NM, 2-Oct-2006.) (Revised by Mario Carneiro, 11-Nov-2013.)
Hypothesis
Ref Expression
cldval.1  |-  X  = 
U. J
Assertion
Ref Expression
cldval  |-  ( J  e.  Top  ->  ( Clsd `  J )  =  { x  e.  ~P X  |  ( X  \  x )  e.  J } )
Distinct variable groups:    x, J    x, X

Proof of Theorem cldval
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 cldval.1 . . . 4  |-  X  = 
U. J
21topopn 16971 . . 3  |-  ( J  e.  Top  ->  X  e.  J )
3 pwexg 4375 . . 3  |-  ( X  e.  J  ->  ~P X  e.  _V )
4 rabexg 4345 . . 3  |-  ( ~P X  e.  _V  ->  { x  e.  ~P X  |  ( X  \  x )  e.  J }  e.  _V )
52, 3, 43syl 19 . 2  |-  ( J  e.  Top  ->  { x  e.  ~P X  |  ( X  \  x )  e.  J }  e.  _V )
6 unieq 4016 . . . . . 6  |-  ( j  =  J  ->  U. j  =  U. J )
76, 1syl6eqr 2485 . . . . 5  |-  ( j  =  J  ->  U. j  =  X )
87pweqd 3796 . . . 4  |-  ( j  =  J  ->  ~P U. j  =  ~P X
)
97difeq1d 3456 . . . . 5  |-  ( j  =  J  ->  ( U. j  \  x
)  =  ( X 
\  x ) )
10 eleq12 2497 . . . . 5  |-  ( ( ( U. j  \  x )  =  ( X  \  x )  /\  j  =  J )  ->  ( ( U. j  \  x
)  e.  j  <->  ( X  \  x )  e.  J
) )
119, 10mpancom 651 . . . 4  |-  ( j  =  J  ->  (
( U. j  \  x )  e.  j  <-> 
( X  \  x
)  e.  J ) )
128, 11rabeqbidv 2943 . . 3  |-  ( j  =  J  ->  { x  e.  ~P U. j  |  ( U. j  \  x )  e.  j }  =  { x  e.  ~P X  |  ( X  \  x )  e.  J } )
13 df-cld 17075 . . 3  |-  Clsd  =  ( j  e.  Top  |->  { x  e.  ~P U. j  |  ( U. j  \  x )  e.  j } )
1412, 13fvmptg 5796 . 2  |-  ( ( J  e.  Top  /\  { x  e.  ~P X  |  ( X  \  x )  e.  J }  e.  _V )  ->  ( Clsd `  J
)  =  { x  e.  ~P X  |  ( X  \  x )  e.  J } )
155, 14mpdan 650 1  |-  ( J  e.  Top  ->  ( Clsd `  J )  =  { x  e.  ~P X  |  ( X  \  x )  e.  J } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1652    e. wcel 1725   {crab 2701   _Vcvv 2948    \ cdif 3309   ~Pcpw 3791   U.cuni 4007   ` cfv 5446   Topctop 16950   Clsdccld 17072
This theorem is referenced by:  iscld  17083  mretopd  17148
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-iota 5410  df-fun 5448  df-fv 5454  df-top 16955  df-cld 17075
  Copyright terms: Public domain W3C validator