MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climfsum Unicode version

Theorem climfsum 12278
Description: Limit of a finite sum of converging sequences. Note that  F ( k ) is a collection of functions with implicit parameter  k, each of which converges to  B ( k ) as  n  ~~>  +oo. (Contributed by Mario Carneiro, 22-Jul-2014.) (Proof shortened by Mario Carneiro, 22-May-2016.)
Hypotheses
Ref Expression
climfsum.1  |-  Z  =  ( ZZ>= `  M )
climfsum.2  |-  ( ph  ->  M  e.  ZZ )
climfsum.3  |-  ( ph  ->  A  e.  Fin )
climfsum.5  |-  ( (
ph  /\  k  e.  A )  ->  F  ~~>  B )
climfsum.6  |-  ( ph  ->  H  e.  W )
climfsum.7  |-  ( (
ph  /\  ( k  e.  A  /\  n  e.  Z ) )  -> 
( F `  n
)  e.  CC )
climfsum.8  |-  ( (
ph  /\  n  e.  Z )  ->  ( H `  n )  =  sum_ k  e.  A  ( F `  n ) )
Assertion
Ref Expression
climfsum  |-  ( ph  ->  H  ~~>  sum_ k  e.  A  B )
Distinct variable groups:    k, n, A    n, H    ph, k, n   
k, Z, n    B, n    n, F    n, M
Allowed substitution hints:    B( k)    F( k)    H( k)    M( k)    W( k, n)

Proof of Theorem climfsum
StepHypRef Expression
1 climfsum.8 . . . 4  |-  ( (
ph  /\  n  e.  Z )  ->  ( H `  n )  =  sum_ k  e.  A  ( F `  n ) )
21mpteq2dva 4106 . . 3  |-  ( ph  ->  ( n  e.  Z  |->  ( H `  n
) )  =  ( n  e.  Z  |->  sum_ k  e.  A  ( F `  n ) ) )
3 climfsum.1 . . . . . . . 8  |-  Z  =  ( ZZ>= `  M )
4 uzssz 10247 . . . . . . . 8  |-  ( ZZ>= `  M )  C_  ZZ
53, 4eqsstri 3208 . . . . . . 7  |-  Z  C_  ZZ
6 zssre 10031 . . . . . . 7  |-  ZZ  C_  RR
75, 6sstri 3188 . . . . . 6  |-  Z  C_  RR
87a1i 10 . . . . 5  |-  ( ph  ->  Z  C_  RR )
9 climfsum.3 . . . . 5  |-  ( ph  ->  A  e.  Fin )
10 fvex 5539 . . . . . 6  |-  ( F `
 n )  e. 
_V
1110a1i 10 . . . . 5  |-  ( (
ph  /\  ( n  e.  Z  /\  k  e.  A ) )  -> 
( F `  n
)  e.  _V )
12 climfsum.5 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  F  ~~>  B )
13 climfsum.2 . . . . . . . . 9  |-  ( ph  ->  M  e.  ZZ )
1413adantr 451 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  M  e.  ZZ )
15 climrel 11966 . . . . . . . . . 10  |-  Rel  ~~>
1615brrelexi 4729 . . . . . . . . 9  |-  ( F  ~~>  B  ->  F  e.  _V )
1712, 16syl 15 . . . . . . . 8  |-  ( (
ph  /\  k  e.  A )  ->  F  e.  _V )
18 eqid 2283 . . . . . . . . 9  |-  ( n  e.  Z  |->  ( F `
 n ) )  =  ( n  e.  Z  |->  ( F `  n ) )
193, 18climmpt 12045 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  F  e.  _V )  ->  ( F  ~~>  B  <->  ( n  e.  Z  |->  ( F `
 n ) )  ~~>  B ) )
2014, 17, 19syl2anc 642 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  ( F 
~~>  B  <->  ( n  e.  Z  |->  ( F `  n ) )  ~~>  B ) )
2112, 20mpbid 201 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  (
n  e.  Z  |->  ( F `  n ) )  ~~>  B )
22 climfsum.7 . . . . . . . . 9  |-  ( (
ph  /\  ( k  e.  A  /\  n  e.  Z ) )  -> 
( F `  n
)  e.  CC )
2322anassrs 629 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  A )  /\  n  e.  Z )  ->  ( F `  n )  e.  CC )
2423, 18fmptd 5684 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  (
n  e.  Z  |->  ( F `  n ) ) : Z --> CC )
253, 14, 24rlimclim 12020 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  (
( n  e.  Z  |->  ( F `  n
) )  ~~> r  B  <->  ( n  e.  Z  |->  ( F `  n ) )  ~~>  B ) )
2621, 25mpbird 223 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  (
n  e.  Z  |->  ( F `  n ) )  ~~> r  B )
278, 9, 11, 26fsumrlim 12269 . . . 4  |-  ( ph  ->  ( n  e.  Z  |-> 
sum_ k  e.  A  ( F `  n ) )  ~~> r  sum_ k  e.  A  B )
289adantr 451 . . . . . . 7  |-  ( (
ph  /\  n  e.  Z )  ->  A  e.  Fin )
2922anass1rs 782 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  Z )  /\  k  e.  A )  ->  ( F `  n )  e.  CC )
3028, 29fsumcl 12206 . . . . . 6  |-  ( (
ph  /\  n  e.  Z )  ->  sum_ k  e.  A  ( F `  n )  e.  CC )
31 eqid 2283 . . . . . 6  |-  ( n  e.  Z  |->  sum_ k  e.  A  ( F `  n ) )  =  ( n  e.  Z  |-> 
sum_ k  e.  A  ( F `  n ) )
3230, 31fmptd 5684 . . . . 5  |-  ( ph  ->  ( n  e.  Z  |-> 
sum_ k  e.  A  ( F `  n ) ) : Z --> CC )
333, 13, 32rlimclim 12020 . . . 4  |-  ( ph  ->  ( ( n  e.  Z  |->  sum_ k  e.  A  ( F `  n ) )  ~~> r  sum_ k  e.  A  B  <->  ( n  e.  Z  |->  sum_ k  e.  A  ( F `  n ) )  ~~>  sum_ k  e.  A  B )
)
3427, 33mpbid 201 . . 3  |-  ( ph  ->  ( n  e.  Z  |-> 
sum_ k  e.  A  ( F `  n ) )  ~~>  sum_ k  e.  A  B )
352, 34eqbrtrd 4043 . 2  |-  ( ph  ->  ( n  e.  Z  |->  ( H `  n
) )  ~~>  sum_ k  e.  A  B )
36 climfsum.6 . . 3  |-  ( ph  ->  H  e.  W )
37 eqid 2283 . . . 4  |-  ( n  e.  Z  |->  ( H `
 n ) )  =  ( n  e.  Z  |->  ( H `  n ) )
383, 37climmpt 12045 . . 3  |-  ( ( M  e.  ZZ  /\  H  e.  W )  ->  ( H  ~~>  sum_ k  e.  A  B  <->  ( n  e.  Z  |->  ( H `
 n ) )  ~~> 
sum_ k  e.  A  B ) )
3913, 36, 38syl2anc 642 . 2  |-  ( ph  ->  ( H  ~~>  sum_ k  e.  A  B  <->  ( n  e.  Z  |->  ( H `
 n ) )  ~~> 
sum_ k  e.  A  B ) )
4035, 39mpbird 223 1  |-  ( ph  ->  H  ~~>  sum_ k  e.  A  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788    C_ wss 3152   class class class wbr 4023    e. cmpt 4077   ` cfv 5255   Fincfn 6863   CCcc 8735   RRcr 8736   ZZcz 10024   ZZ>=cuz 10230    ~~> cli 11958    ~~> r crli 11959   sum_csu 12158
This theorem is referenced by:  itg1climres  19069  plyeq0lem  19592
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815  ax-addf 8816
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-rlim 11963  df-sum 12159
  Copyright terms: Public domain W3C validator