Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climinff Structured version   Unicode version

Theorem climinff 27713
Description: A version of climinf 27708 using bound-variable hypotheses instead of distinct variable conditions (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climinff.1  |-  F/ k
ph
climinff.2  |-  F/_ k F
climinff.3  |-  Z  =  ( ZZ>= `  M )
climinff.4  |-  ( ph  ->  M  e.  ZZ )
climinff.5  |-  ( ph  ->  F : Z --> RR )
climinff.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
climinff.7  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k ) )
Assertion
Ref Expression
climinff  |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  `'  <  ) )
Distinct variable groups:    x, k    x, F    k, Z, x
Allowed substitution hints:    ph( x, k)    F( k)    M( x, k)

Proof of Theorem climinff
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climinff.3 . 2  |-  Z  =  ( ZZ>= `  M )
2 climinff.4 . 2  |-  ( ph  ->  M  e.  ZZ )
3 climinff.5 . 2  |-  ( ph  ->  F : Z --> RR )
4 climinff.1 . . . . 5  |-  F/ k
ph
5 nfv 1629 . . . . 5  |-  F/ k  j  e.  Z
64, 5nfan 1846 . . . 4  |-  F/ k ( ph  /\  j  e.  Z )
7 climinff.2 . . . . . 6  |-  F/_ k F
8 nfcv 2572 . . . . . 6  |-  F/_ k
( j  +  1 )
97, 8nffv 5735 . . . . 5  |-  F/_ k
( F `  (
j  +  1 ) )
10 nfcv 2572 . . . . 5  |-  F/_ k  <_
11 nfcv 2572 . . . . . 6  |-  F/_ k
j
127, 11nffv 5735 . . . . 5  |-  F/_ k
( F `  j
)
139, 10, 12nfbr 4256 . . . 4  |-  F/ k ( F `  (
j  +  1 ) )  <_  ( F `  j )
146, 13nfim 1832 . . 3  |-  F/ k ( ( ph  /\  j  e.  Z )  ->  ( F `  (
j  +  1 ) )  <_  ( F `  j ) )
15 eleq1 2496 . . . . 5  |-  ( k  =  j  ->  (
k  e.  Z  <->  j  e.  Z ) )
1615anbi2d 685 . . . 4  |-  ( k  =  j  ->  (
( ph  /\  k  e.  Z )  <->  ( ph  /\  j  e.  Z ) ) )
17 oveq1 6088 . . . . . 6  |-  ( k  =  j  ->  (
k  +  1 )  =  ( j  +  1 ) )
1817fveq2d 5732 . . . . 5  |-  ( k  =  j  ->  ( F `  ( k  +  1 ) )  =  ( F `  ( j  +  1 ) ) )
19 fveq2 5728 . . . . 5  |-  ( k  =  j  ->  ( F `  k )  =  ( F `  j ) )
2018, 19breq12d 4225 . . . 4  |-  ( k  =  j  ->  (
( F `  (
k  +  1 ) )  <_  ( F `  k )  <->  ( F `  ( j  +  1 ) )  <_  ( F `  j )
) )
2116, 20imbi12d 312 . . 3  |-  ( k  =  j  ->  (
( ( ph  /\  k  e.  Z )  ->  ( F `  (
k  +  1 ) )  <_  ( F `  k ) )  <->  ( ( ph  /\  j  e.  Z
)  ->  ( F `  ( j  +  1 ) )  <_  ( F `  j )
) ) )
22 climinff.6 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( F `  ( k  +  1 ) )  <_  ( F `  k ) )
2314, 21, 22chvar 1968 . 2  |-  ( (
ph  /\  j  e.  Z )  ->  ( F `  ( j  +  1 ) )  <_  ( F `  j ) )
24 nfcv 2572 . . . . 5  |-  F/_ k RR
255nfci 2562 . . . . . 6  |-  F/_ k Z
26 nfcv 2572 . . . . . . 7  |-  F/_ k
x
2726, 10, 12nfbr 4256 . . . . . 6  |-  F/ k  x  <_  ( F `  j )
2825, 27nfral 2759 . . . . 5  |-  F/ k A. j  e.  Z  x  <_  ( F `  j )
2924, 28nfrex 2761 . . . 4  |-  F/ k E. x  e.  RR  A. j  e.  Z  x  <_  ( F `  j )
304, 29nfim 1832 . . 3  |-  F/ k ( ph  ->  E. x  e.  RR  A. j  e.  Z  x  <_  ( F `  j )
)
31 nfv 1629 . . . . . . 7  |-  F/ j  x  <_  ( F `  k )
3219breq2d 4224 . . . . . . 7  |-  ( k  =  j  ->  (
x  <_  ( F `  k )  <->  x  <_  ( F `  j ) ) )
3331, 27, 32cbvral 2928 . . . . . 6  |-  ( A. k  e.  Z  x  <_  ( F `  k
)  <->  A. j  e.  Z  x  <_  ( F `  j ) )
3433a1i 11 . . . . 5  |-  ( k  =  j  ->  ( A. k  e.  Z  x  <_  ( F `  k )  <->  A. j  e.  Z  x  <_  ( F `  j ) ) )
3534rexbidv 2726 . . . 4  |-  ( k  =  j  ->  ( E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k )  <->  E. x  e.  RR  A. j  e.  Z  x  <_  ( F `  j )
) )
3635imbi2d 308 . . 3  |-  ( k  =  j  ->  (
( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k )
)  <->  ( ph  ->  E. x  e.  RR  A. j  e.  Z  x  <_  ( F `  j
) ) ) )
37 climinff.7 . . 3  |-  ( ph  ->  E. x  e.  RR  A. k  e.  Z  x  <_  ( F `  k ) )
3830, 36, 37chvar 1968 . 2  |-  ( ph  ->  E. x  e.  RR  A. j  e.  Z  x  <_  ( F `  j ) )
391, 2, 3, 23, 38climinf 27708 1  |-  ( ph  ->  F  ~~>  sup ( ran  F ,  RR ,  `'  <  ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   F/wnf 1553    = wceq 1652    e. wcel 1725   F/_wnfc 2559   A.wral 2705   E.wrex 2706   class class class wbr 4212   `'ccnv 4877   ran crn 4879   -->wf 5450   ` cfv 5454  (class class class)co 6081   supcsup 7445   RRcr 8989   1c1 8991    + caddc 8993    < clt 9120    <_ cle 9121   ZZcz 10282   ZZ>=cuz 10488    ~~> cli 12278
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067  ax-pre-sup 9068
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-isom 5463  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-1st 6349  df-2nd 6350  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-sup 7446  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-div 9678  df-nn 10001  df-2 10058  df-3 10059  df-n0 10222  df-z 10283  df-uz 10489  df-rp 10613  df-fz 11044  df-seq 11324  df-exp 11383  df-cj 11904  df-re 11905  df-im 11906  df-sqr 12040  df-abs 12041  df-clim 12282
  Copyright terms: Public domain W3C validator