MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  climmpt Unicode version

Theorem climmpt 12045
Description: Exhibit a function  G with the same convergence properties as the not-quite-function  F. (Contributed by Mario Carneiro, 31-Jan-2014.)
Hypotheses
Ref Expression
2clim.1  |-  Z  =  ( ZZ>= `  M )
climmpt.2  |-  G  =  ( k  e.  Z  |->  ( F `  k
) )
Assertion
Ref Expression
climmpt  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Distinct variable groups:    A, k    k, F    k, Z
Allowed substitution hints:    G( k)    M( k)    V( k)

Proof of Theorem climmpt
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 2clim.1 . 2  |-  Z  =  ( ZZ>= `  M )
2 simpr 447 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  F  e.  V )
3 climmpt.2 . . . 4  |-  G  =  ( k  e.  Z  |->  ( F `  k
) )
4 fvex 5539 . . . . . 6  |-  ( ZZ>= `  M )  e.  _V
51, 4eqeltri 2353 . . . . 5  |-  Z  e. 
_V
65mptex 5746 . . . 4  |-  ( k  e.  Z  |->  ( F `
 k ) )  e.  _V
73, 6eqeltri 2353 . . 3  |-  G  e. 
_V
87a1i 10 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  G  e.  _V )
9 simpl 443 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  M  e.  ZZ )
10 fveq2 5525 . . . . 5  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
11 fvex 5539 . . . . 5  |-  ( F `
 m )  e. 
_V
1210, 3, 11fvmpt 5602 . . . 4  |-  ( m  e.  Z  ->  ( G `  m )  =  ( F `  m ) )
1312eqcomd 2288 . . 3  |-  ( m  e.  Z  ->  ( F `  m )  =  ( G `  m ) )
1413adantl 452 . 2  |-  ( ( ( M  e.  ZZ  /\  F  e.  V )  /\  m  e.  Z
)  ->  ( F `  m )  =  ( G `  m ) )
151, 2, 8, 9, 14climeq 12041 1  |-  ( ( M  e.  ZZ  /\  F  e.  V )  ->  ( F  ~~>  A  <->  G  ~~>  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   _Vcvv 2788   class class class wbr 4023    e. cmpt 4077   ` cfv 5255   ZZcz 10024   ZZ>=cuz 10230    ~~> cli 11958
This theorem is referenced by:  climmpt2  12047  climrecl  12057  climge0  12058  caurcvg2  12150  caucvg  12151  climfsum  12278  dstfrvclim1  23678
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-pre-lttri 8811  ax-pre-lttrn 8812
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-po 4314  df-so 4315  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-neg 9040  df-z 10025  df-uz 10231  df-clim 11962
  Copyright terms: Public domain W3C validator