Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climrec Unicode version

Theorem climrec 27729
Description: Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climrec.1  |-  Z  =  ( ZZ>= `  M )
climrec.2  |-  ( ph  ->  M  e.  ZZ )
climrec.3  |-  ( ph  ->  G  ~~>  A )
climrec.4  |-  ( ph  ->  A  =/=  0 )
climrec.5  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  ( CC  \  {
0 } ) )
climrec.6  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( 1  / 
( G `  k
) ) )
climrec.7  |-  ( ph  ->  H  e.  W )
Assertion
Ref Expression
climrec  |-  ( ph  ->  H  ~~>  ( 1  /  A ) )
Distinct variable groups:    ph, k    A, k    k, G    k, H    k, Z
Allowed substitution hints:    M( k)    W( k)

Proof of Theorem climrec
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrec.1 . . 3  |-  Z  =  ( ZZ>= `  M )
2 climrec.2 . . 3  |-  ( ph  ->  M  e.  ZZ )
3 climrec.3 . . . . 5  |-  ( ph  ->  G  ~~>  A )
4 climcl 11973 . . . . 5  |-  ( G  ~~>  A  ->  A  e.  CC )
53, 4syl 15 . . . 4  |-  ( ph  ->  A  e.  CC )
6 climrec.4 . . . . . 6  |-  ( ph  ->  A  =/=  0 )
76neneqd 2462 . . . . 5  |-  ( ph  ->  -.  A  =  0 )
8 c0ex 8832 . . . . . 6  |-  0  e.  _V
98elsnc2 3669 . . . . 5  |-  ( A  e.  { 0 }  <-> 
A  =  0 )
107, 9sylnibr 296 . . . 4  |-  ( ph  ->  -.  A  e.  {
0 } )
115, 10eldifd 3163 . . 3  |-  ( ph  ->  A  e.  ( CC 
\  { 0 } ) )
12 eqidd 2284 . . . . 5  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) )  =  ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) )
13 simpr 447 . . . . . 6  |-  ( ( ( ph  /\  z  e.  ( CC  \  {
0 } ) )  /\  w  =  z )  ->  w  =  z )
1413oveq2d 5874 . . . . 5  |-  ( ( ( ph  /\  z  e.  ( CC  \  {
0 } ) )  /\  w  =  z )  ->  ( 1  /  w )  =  ( 1  /  z
) )
15 simpr 447 . . . . 5  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
z  e.  ( CC 
\  { 0 } ) )
1615eldifad 3164 . . . . . 6  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
z  e.  CC )
17 eldifsni 3750 . . . . . . 7  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  =/=  0
)
1817adantl 452 . . . . . 6  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
z  =/=  0 )
1916, 18reccld 9529 . . . . 5  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( 1  /  z
)  e.  CC )
2012, 14, 15, 19fvmptd 5606 . . . 4  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  =  ( 1  / 
z ) )
2120, 19eqeltrd 2357 . . 3  |-  ( (
ph  /\  z  e.  ( CC  \  { 0 } ) )  -> 
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  e.  CC )
22 climrec.7 . . 3  |-  ( ph  ->  H  e.  W )
2311adantr 451 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  A  e.  ( CC  \  { 0 } ) )
24 simpr 447 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  x  e.  RR+ )
2523, 24jca 518 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A  e.  ( CC  \  {
0 } )  /\  x  e.  RR+ ) )
26 eqid 2283 . . . . . 6  |-  ( if ( 1  <_  (
( abs `  A
)  x.  x ) ,  1 ,  ( ( abs `  A
)  x.  x ) )  x.  ( ( abs `  A )  /  2 ) )  =  ( if ( 1  <_  ( ( abs `  A )  x.  x ) ,  1 ,  ( ( abs `  A )  x.  x
) )  x.  (
( abs `  A
)  /  2 ) )
2726reccn2 12070 . . . . 5  |-  ( ( A  e.  ( CC 
\  { 0 } )  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) )
2825, 27syl 15 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) )
29 eqidd 2284 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) )  =  ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) )
30 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( z  e.  ( CC 
\  { 0 } )  /\  w  =  z )  ->  w  =  z )
3130oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ( z  e.  ( CC 
\  { 0 } )  /\  w  =  z )  ->  (
1  /  w )  =  ( 1  / 
z ) )
32 id 19 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  e.  ( CC  \  { 0 } ) )
33 eldifi 3298 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( CC  \  { 0 } )  ->  z  e.  CC )
3433, 17reccld 9529 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( 1  / 
z )  e.  CC )
3529, 31, 32, 34fvmptd 5606 . . . . . . . . . . . . . 14  |-  ( z  e.  ( CC  \  { 0 } )  ->  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  z
)  =  ( 1  /  z ) )
3635ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  z
)  =  ( 1  /  z ) )
37 eqidd 2284 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) )  =  ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) )
38 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  w  =  A )  ->  w  =  A )
3938oveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  w  =  A )  ->  (
1  /  w )  =  ( 1  /  A ) )
405, 6reccld 9529 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 1  /  A
)  e.  CC )
4137, 39, 11, 40fvmptd 5606 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  A )  =  ( 1  /  A ) )
4241ad4antr 712 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
)  =  ( 1  /  A ) )
4336, 42oveq12d 5876 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( ( ( w  e.  ( CC 
\  { 0 } )  |->  ( 1  /  w ) ) `  z )  -  (
( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) ) `
 A ) )  =  ( ( 1  /  z )  -  ( 1  /  A
) ) )
4443fveq2d 5529 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  =  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) ) )
45 simpr 447 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( abs `  (
z  -  A ) )  <  y )
4632ad2antlr 707 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  z  e.  ( CC  \  { 0 } ) )
47 simpllr 735 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( z  e.  ( CC  \  {
0 } )  -> 
( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )
4846, 47mpd 14 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) )
4945, 48mpd 14 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x )
5044, 49eqbrtrd 4043 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  /\  ( abs `  (
z  -  A ) )  <  y )  ->  ( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  < 
x )
5150ex 423 . . . . . . . . 9  |-  ( ( ( ( ph  /\  x  e.  RR+ )  /\  ( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) ) )  /\  z  e.  ( CC  \  {
0 } ) )  ->  ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  < 
x ) )
5251ex 423 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  RR+ )  /\  (
z  e.  ( CC 
\  { 0 } )  ->  ( ( abs `  ( z  -  A ) )  < 
y  ->  ( abs `  ( ( 1  / 
z )  -  (
1  /  A ) ) )  <  x
) ) )  -> 
( z  e.  ( CC  \  { 0 } )  ->  (
( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  < 
x ) ) )
5352ex 423 . . . . . . 7  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
z  e.  ( CC 
\  { 0 } )  ->  ( ( abs `  ( z  -  A ) )  < 
y  ->  ( abs `  ( ( 1  / 
z )  -  (
1  /  A ) ) )  <  x
) )  ->  (
z  e.  ( CC 
\  { 0 } )  ->  ( ( abs `  ( z  -  A ) )  < 
y  ->  ( abs `  ( ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  z
)  -  ( ( w  e.  ( CC 
\  { 0 } )  |->  ( 1  /  w ) ) `  A ) ) )  <  x ) ) ) )
5453ralimdv2 2623 . . . . . 6  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( A. z  e.  ( CC  \  { 0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x )  ->  A. z  e.  ( CC  \  { 0 } ) ( ( abs `  ( z  -  A ) )  <  y  ->  ( abs `  ( ( ( w  e.  ( CC 
\  { 0 } )  |->  ( 1  /  w ) ) `  z )  -  (
( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) ) `
 A ) ) )  <  x ) ) )
5554anim2d 548 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( (
y  e.  RR+  /\  A. z  e.  ( CC  \  { 0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x ) )  ->  ( y  e.  RR+  /\  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  < 
x ) ) ) )
5655reximdv2 2652 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( 1  /  z
)  -  ( 1  /  A ) ) )  <  x )  ->  E. y  e.  RR+  A. z  e.  ( CC 
\  { 0 } ) ( ( abs `  ( z  -  A
) )  <  y  ->  ( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  < 
x ) ) )
5728, 56mpd 14 . . 3  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. y  e.  RR+  A. z  e.  ( CC  \  {
0 } ) ( ( abs `  (
z  -  A ) )  <  y  -> 
( abs `  (
( ( w  e.  ( CC  \  {
0 } )  |->  ( 1  /  w ) ) `  z )  -  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) ) )  < 
x ) )
58 climrec.5 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  ( CC  \  {
0 } ) )
59 climrec.6 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( 1  / 
( G `  k
) ) )
60 eqidd 2284 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
w  e.  ( CC 
\  { 0 } )  |->  ( 1  /  w ) )  =  ( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) ) )
61 oveq2 5866 . . . . . 6  |-  ( w  =  ( G `  k )  ->  (
1  /  w )  =  ( 1  / 
( G `  k
) ) )
6261adantl 452 . . . . 5  |-  ( ( ( ph  /\  k  e.  Z )  /\  w  =  ( G `  k ) )  -> 
( 1  /  w
)  =  ( 1  /  ( G `  k ) ) )
6358eldifad 3164 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  e.  CC )
64 eldifsni 3750 . . . . . . 7  |-  ( ( G `  k )  e.  ( CC  \  { 0 } )  ->  ( G `  k )  =/=  0
)
6558, 64syl 15 . . . . . 6  |-  ( (
ph  /\  k  e.  Z )  ->  ( G `  k )  =/=  0 )
6663, 65reccld 9529 . . . . 5  |-  ( (
ph  /\  k  e.  Z )  ->  (
1  /  ( G `
 k ) )  e.  CC )
6760, 62, 58, 66fvmptd 5606 . . . 4  |-  ( (
ph  /\  k  e.  Z )  ->  (
( w  e.  ( CC  \  { 0 } )  |->  ( 1  /  w ) ) `
 ( G `  k ) )  =  ( 1  /  ( G `  k )
) )
6859, 67eqtr4d 2318 . . 3  |-  ( (
ph  /\  k  e.  Z )  ->  ( H `  k )  =  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  ( G `  k )
) )
691, 2, 11, 21, 3, 22, 57, 58, 68climcn1 12065 . 2  |-  ( ph  ->  H  ~~>  ( ( w  e.  ( CC  \  { 0 } ) 
|->  ( 1  /  w
) ) `  A
) )
7069, 41breqtrd 4047 1  |-  ( ph  ->  H  ~~>  ( 1  /  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544    \ cdif 3149   ifcif 3565   {csn 3640   class class class wbr 4023    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   2c2 9795   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   abscabs 11719    ~~> cli 11958
This theorem is referenced by:  climrecf  27735  wallispi  27819
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962
  Copyright terms: Public domain W3C validator