Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsuselem1 Unicode version

Theorem climsuselem1 27733
Description: The subsequence index  I has the expected properties: it belongs to the same upper integers as the original index, and it is always larger or equal than the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climsuselem1.1  |-  Z  =  ( ZZ>= `  M )
climsuselem1.2  |-  ( ph  ->  M  e.  ZZ )
climsuselem1.3  |-  ( ph  ->  ( I `  M
)  e.  Z )
climsuselem1.4  |-  ( (
ph  /\  k  e.  Z )  ->  (
I `  ( k  +  1 ) )  e.  ( ZZ>= `  (
( I `  k
)  +  1 ) ) )
Assertion
Ref Expression
climsuselem1  |-  ( (
ph  /\  K  e.  Z )  ->  (
I `  K )  e.  ( ZZ>= `  K )
)
Distinct variable groups:    ph, k    k, I    k, M    k, Z
Allowed substitution hint:    K( k)

Proof of Theorem climsuselem1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climsuselem1.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
21eleq2i 2347 . . . 4  |-  ( K  e.  Z  <->  K  e.  ( ZZ>= `  M )
)
32biimpi 186 . . 3  |-  ( K  e.  Z  ->  K  e.  ( ZZ>= `  M )
)
43adantl 452 . 2  |-  ( (
ph  /\  K  e.  Z )  ->  K  e.  ( ZZ>= `  M )
)
5 simpl 443 . 2  |-  ( (
ph  /\  K  e.  Z )  ->  ph )
6 fveq2 5525 . . . . 5  |-  ( j  =  M  ->  (
I `  j )  =  ( I `  M ) )
7 fveq2 5525 . . . . 5  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
86, 7eleq12d 2351 . . . 4  |-  ( j  =  M  ->  (
( I `  j
)  e.  ( ZZ>= `  j )  <->  ( I `  M )  e.  (
ZZ>= `  M ) ) )
98imbi2d 307 . . 3  |-  ( j  =  M  ->  (
( ph  ->  ( I `
 j )  e.  ( ZZ>= `  j )
)  <->  ( ph  ->  ( I `  M )  e.  ( ZZ>= `  M
) ) ) )
10 fveq2 5525 . . . . 5  |-  ( j  =  k  ->  (
I `  j )  =  ( I `  k ) )
11 fveq2 5525 . . . . 5  |-  ( j  =  k  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  k )
)
1210, 11eleq12d 2351 . . . 4  |-  ( j  =  k  ->  (
( I `  j
)  e.  ( ZZ>= `  j )  <->  ( I `  k )  e.  (
ZZ>= `  k ) ) )
1312imbi2d 307 . . 3  |-  ( j  =  k  ->  (
( ph  ->  ( I `
 j )  e.  ( ZZ>= `  j )
)  <->  ( ph  ->  ( I `  k )  e.  ( ZZ>= `  k
) ) ) )
14 fveq2 5525 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
I `  j )  =  ( I `  ( k  +  1 ) ) )
15 fveq2 5525 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  ( k  +  1 ) ) )
1614, 15eleq12d 2351 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( I `  j
)  e.  ( ZZ>= `  j )  <->  ( I `  ( k  +  1 ) )  e.  (
ZZ>= `  ( k  +  1 ) ) ) )
1716imbi2d 307 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( ph  ->  ( I `
 j )  e.  ( ZZ>= `  j )
)  <->  ( ph  ->  ( I `  ( k  +  1 ) )  e.  ( ZZ>= `  (
k  +  1 ) ) ) ) )
18 fveq2 5525 . . . . 5  |-  ( j  =  K  ->  (
I `  j )  =  ( I `  K ) )
19 fveq2 5525 . . . . 5  |-  ( j  =  K  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  K )
)
2018, 19eleq12d 2351 . . . 4  |-  ( j  =  K  ->  (
( I `  j
)  e.  ( ZZ>= `  j )  <->  ( I `  K )  e.  (
ZZ>= `  K ) ) )
2120imbi2d 307 . . 3  |-  ( j  =  K  ->  (
( ph  ->  ( I `
 j )  e.  ( ZZ>= `  j )
)  <->  ( ph  ->  ( I `  K )  e.  ( ZZ>= `  K
) ) ) )
22 climsuselem1.3 . . . . 5  |-  ( ph  ->  ( I `  M
)  e.  Z )
2322, 1syl6eleq 2373 . . . 4  |-  ( ph  ->  ( I `  M
)  e.  ( ZZ>= `  M ) )
2423a1i 10 . . 3  |-  ( M  e.  ZZ  ->  ( ph  ->  ( I `  M )  e.  (
ZZ>= `  M ) ) )
25 simpr 447 . . . . . 6  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  ph )
26 simpll 730 . . . . . 6  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  k  e.  ( ZZ>= `  M ) )
27 simplr 731 . . . . . . . 8  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  ( ph  ->  (
I `  k )  e.  ( ZZ>= `  k )
) )
2825, 27jca 518 . . . . . . 7  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  ( ph  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) ) )
29 pm3.35 570 . . . . . . 7  |-  ( (
ph  /\  ( ph  ->  ( I `  k
)  e.  ( ZZ>= `  k ) ) )  ->  ( I `  k )  e.  (
ZZ>= `  k ) )
3028, 29syl 15 . . . . . 6  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  ( I `  k
)  e.  ( ZZ>= `  k ) )
3125, 26, 303jca 1132 . . . . 5  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  ( ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) ) )
32 eluzelz 10238 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
33323ad2ant2 977 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
k  e.  ZZ )
3433peano2zd 10120 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( k  +  1 )  e.  ZZ )
3534zred 10117 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( k  +  1 )  e.  RR )
36 eluzelre 10239 . . . . . . . . 9  |-  ( ( I `  k )  e.  ( ZZ>= `  k
)  ->  ( I `  k )  e.  RR )
37363ad2ant3 978 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( I `  k
)  e.  RR )
38 1re 8837 . . . . . . . . 9  |-  1  e.  RR
3938a1i 10 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
1  e.  RR )
4037, 39readdcld 8862 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( ( I `  k )  +  1 )  e.  RR )
411eqimss2i 3233 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  M )  C_  Z
4241a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  M )  C_  Z )
4342sseld 3179 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  (
ZZ>= `  M )  -> 
k  e.  Z ) )
4443imdistani 671 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ph  /\  k  e.  Z ) )
45 climsuselem1.4 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  (
I `  ( k  +  1 ) )  e.  ( ZZ>= `  (
( I `  k
)  +  1 ) ) )
4644, 45syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( I `  ( k  +  1 ) )  e.  (
ZZ>= `  ( ( I `
 k )  +  1 ) ) )
47463adant3 975 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( I `  (
k  +  1 ) )  e.  ( ZZ>= `  ( ( I `  k )  +  1 ) ) )
48 eluzelz 10238 . . . . . . . . 9  |-  ( ( I `  ( k  +  1 ) )  e.  ( ZZ>= `  (
( I `  k
)  +  1 ) )  ->  ( I `  ( k  +  1 ) )  e.  ZZ )
4947, 48syl 15 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( I `  (
k  +  1 ) )  e.  ZZ )
5049zred 10117 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( I `  (
k  +  1 ) )  e.  RR )
5133zred 10117 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
k  e.  RR )
52 eluzle 10240 . . . . . . . . 9  |-  ( ( I `  k )  e.  ( ZZ>= `  k
)  ->  k  <_  ( I `  k ) )
53523ad2ant3 978 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
k  <_  ( I `  k ) )
5451, 37, 39, 53leadd1dd 9386 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( k  +  1 )  <_  ( (
I `  k )  +  1 ) )
55 eluzle 10240 . . . . . . . 8  |-  ( ( I `  ( k  +  1 ) )  e.  ( ZZ>= `  (
( I `  k
)  +  1 ) )  ->  ( (
I `  k )  +  1 )  <_ 
( I `  (
k  +  1 ) ) )
5647, 55syl 15 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( ( I `  k )  +  1 )  <_  ( I `  ( k  +  1 ) ) )
5735, 40, 50, 54, 56letrd 8973 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( k  +  1 )  <_  ( I `  ( k  +  1 ) ) )
5834, 49jca 518 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( ( k  +  1 )  e.  ZZ  /\  ( I `  (
k  +  1 ) )  e.  ZZ ) )
59 eluz 10241 . . . . . . 7  |-  ( ( ( k  +  1 )  e.  ZZ  /\  ( I `  (
k  +  1 ) )  e.  ZZ )  ->  ( ( I `
 ( k  +  1 ) )  e.  ( ZZ>= `  ( k  +  1 ) )  <-> 
( k  +  1 )  <_  ( I `  ( k  +  1 ) ) ) )
6058, 59syl 15 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( ( I `  ( k  +  1 ) )  e.  (
ZZ>= `  ( k  +  1 ) )  <->  ( k  +  1 )  <_ 
( I `  (
k  +  1 ) ) ) )
6157, 60mpbird 223 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( I `  (
k  +  1 ) )  e.  ( ZZ>= `  ( k  +  1 ) ) )
6231, 61syl 15 . . . 4  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  ( I `  (
k  +  1 ) )  e.  ( ZZ>= `  ( k  +  1 ) ) )
6362exp31 587 . . 3  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) )  ->  ( ph  ->  ( I `  ( k  +  1 ) )  e.  ( ZZ>= `  (
k  +  1 ) ) ) ) )
649, 13, 17, 21, 24, 63uzind4 10276 . 2  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( I `  K
)  e.  ( ZZ>= `  K ) ) )
654, 5, 64sylc 56 1  |-  ( (
ph  /\  K  e.  Z )  ->  (
I `  K )  e.  ( ZZ>= `  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    C_ wss 3152   class class class wbr 4023   ` cfv 5255  (class class class)co 5858   RRcr 8736   1c1 8738    + caddc 8740    <_ cle 8868   ZZcz 10024   ZZ>=cuz 10230
This theorem is referenced by:  climsuse  27734
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-n0 9966  df-z 10025  df-uz 10231
  Copyright terms: Public domain W3C validator