Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climsuselem1 Unicode version

Theorem climsuselem1 27056
Description: The subsequence index  I has the expected properties: it belongs to the same upper integers as the original index, and it is always larger or equal than the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Hypotheses
Ref Expression
climsuselem1.1  |-  Z  =  ( ZZ>= `  M )
climsuselem1.2  |-  ( ph  ->  M  e.  ZZ )
climsuselem1.3  |-  ( ph  ->  ( I `  M
)  e.  Z )
climsuselem1.4  |-  ( (
ph  /\  k  e.  Z )  ->  (
I `  ( k  +  1 ) )  e.  ( ZZ>= `  (
( I `  k
)  +  1 ) ) )
Assertion
Ref Expression
climsuselem1  |-  ( (
ph  /\  K  e.  Z )  ->  (
I `  K )  e.  ( ZZ>= `  K )
)
Distinct variable groups:    ph, k    k, I    k, M    k, Z
Allowed substitution hint:    K( k)

Proof of Theorem climsuselem1
Dummy variable  j is distinct from all other variables.
StepHypRef Expression
1 climsuselem1.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
21eleq2i 2422 . . . 4  |-  ( K  e.  Z  <->  K  e.  ( ZZ>= `  M )
)
32biimpi 186 . . 3  |-  ( K  e.  Z  ->  K  e.  ( ZZ>= `  M )
)
43adantl 452 . 2  |-  ( (
ph  /\  K  e.  Z )  ->  K  e.  ( ZZ>= `  M )
)
5 simpl 443 . 2  |-  ( (
ph  /\  K  e.  Z )  ->  ph )
6 fveq2 5605 . . . . 5  |-  ( j  =  M  ->  (
I `  j )  =  ( I `  M ) )
7 fveq2 5605 . . . . 5  |-  ( j  =  M  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  M )
)
86, 7eleq12d 2426 . . . 4  |-  ( j  =  M  ->  (
( I `  j
)  e.  ( ZZ>= `  j )  <->  ( I `  M )  e.  (
ZZ>= `  M ) ) )
98imbi2d 307 . . 3  |-  ( j  =  M  ->  (
( ph  ->  ( I `
 j )  e.  ( ZZ>= `  j )
)  <->  ( ph  ->  ( I `  M )  e.  ( ZZ>= `  M
) ) ) )
10 fveq2 5605 . . . . 5  |-  ( j  =  k  ->  (
I `  j )  =  ( I `  k ) )
11 fveq2 5605 . . . . 5  |-  ( j  =  k  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  k )
)
1210, 11eleq12d 2426 . . . 4  |-  ( j  =  k  ->  (
( I `  j
)  e.  ( ZZ>= `  j )  <->  ( I `  k )  e.  (
ZZ>= `  k ) ) )
1312imbi2d 307 . . 3  |-  ( j  =  k  ->  (
( ph  ->  ( I `
 j )  e.  ( ZZ>= `  j )
)  <->  ( ph  ->  ( I `  k )  e.  ( ZZ>= `  k
) ) ) )
14 fveq2 5605 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
I `  j )  =  ( I `  ( k  +  1 ) ) )
15 fveq2 5605 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  ( k  +  1 ) ) )
1614, 15eleq12d 2426 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( I `  j
)  e.  ( ZZ>= `  j )  <->  ( I `  ( k  +  1 ) )  e.  (
ZZ>= `  ( k  +  1 ) ) ) )
1716imbi2d 307 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( ph  ->  ( I `
 j )  e.  ( ZZ>= `  j )
)  <->  ( ph  ->  ( I `  ( k  +  1 ) )  e.  ( ZZ>= `  (
k  +  1 ) ) ) ) )
18 fveq2 5605 . . . . 5  |-  ( j  =  K  ->  (
I `  j )  =  ( I `  K ) )
19 fveq2 5605 . . . . 5  |-  ( j  =  K  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  K )
)
2018, 19eleq12d 2426 . . . 4  |-  ( j  =  K  ->  (
( I `  j
)  e.  ( ZZ>= `  j )  <->  ( I `  K )  e.  (
ZZ>= `  K ) ) )
2120imbi2d 307 . . 3  |-  ( j  =  K  ->  (
( ph  ->  ( I `
 j )  e.  ( ZZ>= `  j )
)  <->  ( ph  ->  ( I `  K )  e.  ( ZZ>= `  K
) ) ) )
22 climsuselem1.3 . . . . 5  |-  ( ph  ->  ( I `  M
)  e.  Z )
2322, 1syl6eleq 2448 . . . 4  |-  ( ph  ->  ( I `  M
)  e.  ( ZZ>= `  M ) )
2423a1i 10 . . 3  |-  ( M  e.  ZZ  ->  ( ph  ->  ( I `  M )  e.  (
ZZ>= `  M ) ) )
25 simpr 447 . . . . . 6  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  ph )
26 simpll 730 . . . . . 6  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  k  e.  ( ZZ>= `  M ) )
27 simplr 731 . . . . . . . 8  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  ( ph  ->  (
I `  k )  e.  ( ZZ>= `  k )
) )
2825, 27jca 518 . . . . . . 7  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  ( ph  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) ) )
29 pm3.35 570 . . . . . . 7  |-  ( (
ph  /\  ( ph  ->  ( I `  k
)  e.  ( ZZ>= `  k ) ) )  ->  ( I `  k )  e.  (
ZZ>= `  k ) )
3028, 29syl 15 . . . . . 6  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  ( I `  k
)  e.  ( ZZ>= `  k ) )
3125, 26, 303jca 1132 . . . . 5  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  ( ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) ) )
32 eluzelz 10327 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
33323ad2ant2 977 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
k  e.  ZZ )
3433peano2zd 10209 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( k  +  1 )  e.  ZZ )
3534zred 10206 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( k  +  1 )  e.  RR )
36 eluzelre 10328 . . . . . . . . 9  |-  ( ( I `  k )  e.  ( ZZ>= `  k
)  ->  ( I `  k )  e.  RR )
37363ad2ant3 978 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( I `  k
)  e.  RR )
38 1re 8924 . . . . . . . . 9  |-  1  e.  RR
3938a1i 10 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
1  e.  RR )
4037, 39readdcld 8949 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( ( I `  k )  +  1 )  e.  RR )
411eqimss2i 3309 . . . . . . . . . . . . . 14  |-  ( ZZ>= `  M )  C_  Z
4241a1i 10 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ZZ>= `  M )  C_  Z )
4342sseld 3255 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  (
ZZ>= `  M )  -> 
k  e.  Z ) )
4443imdistani 671 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ph  /\  k  e.  Z ) )
45 climsuselem1.4 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  Z )  ->  (
I `  ( k  +  1 ) )  e.  ( ZZ>= `  (
( I `  k
)  +  1 ) ) )
4644, 45syl 15 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( I `  ( k  +  1 ) )  e.  (
ZZ>= `  ( ( I `
 k )  +  1 ) ) )
47463adant3 975 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( I `  (
k  +  1 ) )  e.  ( ZZ>= `  ( ( I `  k )  +  1 ) ) )
48 eluzelz 10327 . . . . . . . . 9  |-  ( ( I `  ( k  +  1 ) )  e.  ( ZZ>= `  (
( I `  k
)  +  1 ) )  ->  ( I `  ( k  +  1 ) )  e.  ZZ )
4947, 48syl 15 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( I `  (
k  +  1 ) )  e.  ZZ )
5049zred 10206 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( I `  (
k  +  1 ) )  e.  RR )
5133zred 10206 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
k  e.  RR )
52 eluzle 10329 . . . . . . . . 9  |-  ( ( I `  k )  e.  ( ZZ>= `  k
)  ->  k  <_  ( I `  k ) )
53523ad2ant3 978 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
k  <_  ( I `  k ) )
5451, 37, 39, 53leadd1dd 9473 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( k  +  1 )  <_  ( (
I `  k )  +  1 ) )
55 eluzle 10329 . . . . . . . 8  |-  ( ( I `  ( k  +  1 ) )  e.  ( ZZ>= `  (
( I `  k
)  +  1 ) )  ->  ( (
I `  k )  +  1 )  <_ 
( I `  (
k  +  1 ) ) )
5647, 55syl 15 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( ( I `  k )  +  1 )  <_  ( I `  ( k  +  1 ) ) )
5735, 40, 50, 54, 56letrd 9060 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( k  +  1 )  <_  ( I `  ( k  +  1 ) ) )
5834, 49jca 518 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( ( k  +  1 )  e.  ZZ  /\  ( I `  (
k  +  1 ) )  e.  ZZ ) )
59 eluz 10330 . . . . . . 7  |-  ( ( ( k  +  1 )  e.  ZZ  /\  ( I `  (
k  +  1 ) )  e.  ZZ )  ->  ( ( I `
 ( k  +  1 ) )  e.  ( ZZ>= `  ( k  +  1 ) )  <-> 
( k  +  1 )  <_  ( I `  ( k  +  1 ) ) ) )
6058, 59syl 15 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( ( I `  ( k  +  1 ) )  e.  (
ZZ>= `  ( k  +  1 ) )  <->  ( k  +  1 )  <_ 
( I `  (
k  +  1 ) ) ) )
6157, 60mpbird 223 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )  /\  ( I `  k
)  e.  ( ZZ>= `  k ) )  -> 
( I `  (
k  +  1 ) )  e.  ( ZZ>= `  ( k  +  1 ) ) )
6231, 61syl 15 . . . 4  |-  ( ( ( k  e.  (
ZZ>= `  M )  /\  ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) ) )  /\  ph )  ->  ( I `  (
k  +  1 ) )  e.  ( ZZ>= `  ( k  +  1 ) ) )
6362exp31 587 . . 3  |-  ( k  e.  ( ZZ>= `  M
)  ->  ( ( ph  ->  ( I `  k )  e.  (
ZZ>= `  k ) )  ->  ( ph  ->  ( I `  ( k  +  1 ) )  e.  ( ZZ>= `  (
k  +  1 ) ) ) ) )
649, 13, 17, 21, 24, 63uzind4 10365 . 2  |-  ( K  e.  ( ZZ>= `  M
)  ->  ( ph  ->  ( I `  K
)  e.  ( ZZ>= `  K ) ) )
654, 5, 64sylc 56 1  |-  ( (
ph  /\  K  e.  Z )  ->  (
I `  K )  e.  ( ZZ>= `  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    C_ wss 3228   class class class wbr 4102   ` cfv 5334  (class class class)co 5942   RRcr 8823   1c1 8825    + caddc 8827    <_ cle 8955   ZZcz 10113   ZZ>=cuz 10319
This theorem is referenced by:  climsuse  27057
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-riota 6388  df-recs 6472  df-rdg 6507  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-nn 9834  df-n0 10055  df-z 10114  df-uz 10320
  Copyright terms: Public domain W3C validator