MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmcj Structured version   Unicode version

Theorem clmcj 19103
Description: The conjugation of the scalar ring of a complex module. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypothesis
Ref Expression
clm0.f  |-  F  =  (Scalar `  W )
Assertion
Ref Expression
clmcj  |-  ( W  e. CMod  ->  *  =  ( * r `  F
) )

Proof of Theorem clmcj
StepHypRef Expression
1 clm0.f . . . 4  |-  F  =  (Scalar `  W )
2 eqid 2438 . . . 4  |-  ( Base `  F )  =  (
Base `  F )
31, 2clmsca 19092 . . 3  |-  ( W  e. CMod  ->  F  =  (flds  ( Base `  F ) ) )
43fveq2d 5734 . 2  |-  ( W  e. CMod  ->  ( * r `
 F )  =  ( * r `  (flds  ( Base `  F ) ) ) )
5 fvex 5744 . . 3  |-  ( Base `  F )  e.  _V
6 eqid 2438 . . . 4  |-  (flds  ( Base `  F
) )  =  (flds  ( Base `  F ) )
7 cnfldcj 16712 . . . 4  |-  *  =  ( * r ` fld )
86, 7ressstarv 13585 . . 3  |-  ( (
Base `  F )  e.  _V  ->  *  =  ( * r `  (flds  ( Base `  F ) ) ) )
95, 8ax-mp 8 . 2  |-  *  =  ( * r `  (flds  ( Base `  F ) ) )
104, 9syl6reqr 2489 1  |-  ( W  e. CMod  ->  *  =  ( * r `  F
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1653    e. wcel 1726   _Vcvv 2958   ` cfv 5456  (class class class)co 6083   *ccj 11903   Basecbs 13471   ↾s cress 13472   * rcstv 13533  Scalarcsca 13534  ℂfldccnfld 16705  CModcclm 19089
This theorem is referenced by:  cphipcj  19164  cphassr  19176  tchcphlem3  19192  tchcphlem1  19194  tchcphlem2  19195
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703  ax-cnex 9048  ax-resscn 9049  ax-1cn 9050  ax-icn 9051  ax-addcl 9052  ax-addrcl 9053  ax-mulcl 9054  ax-mulrcl 9055  ax-mulcom 9056  ax-addass 9057  ax-mulass 9058  ax-distr 9059  ax-i2m1 9060  ax-1ne0 9061  ax-1rid 9062  ax-rnegex 9063  ax-rrecex 9064  ax-cnre 9065  ax-pre-lttri 9066  ax-pre-lttrn 9067  ax-pre-ltadd 9068  ax-pre-mulgt0 9069
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-tr 4305  df-eprel 4496  df-id 4500  df-po 4505  df-so 4506  df-fr 4543  df-we 4545  df-ord 4586  df-on 4587  df-lim 4588  df-suc 4589  df-om 4848  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-res 4892  df-ima 4893  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-f1 5461  df-fo 5462  df-f1o 5463  df-fv 5464  df-ov 6086  df-oprab 6087  df-mpt2 6088  df-1st 6351  df-2nd 6352  df-riota 6551  df-recs 6635  df-rdg 6670  df-1o 6726  df-oadd 6730  df-er 6907  df-en 7112  df-dom 7113  df-sdom 7114  df-fin 7115  df-pnf 9124  df-mnf 9125  df-xr 9126  df-ltxr 9127  df-le 9128  df-sub 9295  df-neg 9296  df-div 9680  df-nn 10003  df-2 10060  df-3 10061  df-4 10062  df-5 10063  df-6 10064  df-7 10065  df-8 10066  df-9 10067  df-10 10068  df-n0 10224  df-z 10285  df-dec 10385  df-uz 10491  df-fz 11046  df-cj 11906  df-struct 13473  df-ndx 13474  df-slot 13475  df-base 13476  df-sets 13477  df-ress 13478  df-plusg 13544  df-mulr 13545  df-starv 13546  df-tset 13550  df-ple 13551  df-ds 13553  df-unif 13554  df-cnfld 16706  df-clm 19090
  Copyright terms: Public domain W3C validator