Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clme Unicode version

Theorem clme 25290
Description: Closure of meet. (Contributed by FL, 12-Dec-2009.)
Hypothesis
Ref Expression
jop1  |-  X  =  dom  dom  J
Assertion
Ref Expression
clme  |-  ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e. 
LatAlg )  ->  ( ( P  e.  X  /\  Q  e.  X )  ->  ( P M Q )  e.  X ) )

Proof of Theorem clme
StepHypRef Expression
1 jop1 . . . . . 6  |-  X  =  dom  dom  J
21mop 25288 . . . . 5  |-  ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e. 
LatAlg )  ->  M :
( X  X.  X
) --> X )
32adantr 451 . . . 4  |-  ( ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e.  LatAlg )  /\  ( P  e.  X  /\  Q  e.  X )
)  ->  M :
( X  X.  X
) --> X )
4 simprl 732 . . . 4  |-  ( ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e.  LatAlg )  /\  ( P  e.  X  /\  Q  e.  X )
)  ->  P  e.  X )
5 simprr 733 . . . 4  |-  ( ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e.  LatAlg )  /\  ( P  e.  X  /\  Q  e.  X )
)  ->  Q  e.  X )
63, 4, 53jca 1132 . . 3  |-  ( ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e.  LatAlg )  /\  ( P  e.  X  /\  Q  e.  X )
)  ->  ( M : ( X  X.  X ) --> X  /\  P  e.  X  /\  Q  e.  X )
)
76ex 423 . 2  |-  ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e. 
LatAlg )  ->  ( ( P  e.  X  /\  Q  e.  X )  ->  ( M : ( X  X.  X ) --> X  /\  P  e.  X  /\  Q  e.  X ) ) )
8 fovrn 6006 . 2  |-  ( ( M : ( X  X.  X ) --> X  /\  P  e.  X  /\  Q  e.  X
)  ->  ( P M Q )  e.  X
)
97, 8syl6 29 1  |-  ( ( J  e.  A  /\  M  e.  B  /\  <. J ,  M >.  e. 
LatAlg )  ->  ( ( P  e.  X  /\  Q  e.  X )  ->  ( P M Q )  e.  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   <.cop 3656    X. cxp 4703   dom cdm 4705   -->wf 5267  (class class class)co 5874   LatAlgclatalg 25284
This theorem is referenced by:  midd  25296
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-latalg 25285
  Copyright terms: Public domain W3C validator