MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmfgrp Unicode version

Theorem clmfgrp 18569
Description: The scalar ring of a complex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypothesis
Ref Expression
clm0.f  |-  F  =  (Scalar `  W )
Assertion
Ref Expression
clmfgrp  |-  ( W  e. CMod  ->  F  e.  Grp )

Proof of Theorem clmfgrp
StepHypRef Expression
1 clmlmod 18565 . 2  |-  ( W  e. CMod  ->  W  e.  LMod )
2 clm0.f . . 3  |-  F  =  (Scalar `  W )
32lmodfgrp 15636 . 2  |-  ( W  e.  LMod  ->  F  e. 
Grp )
41, 3syl 15 1  |-  ( W  e. CMod  ->  F  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1623    e. wcel 1684   ` cfv 5255  Scalarcsca 13211   Grpcgrp 14362   LModclmod 15627  CModcclm 18560
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-nul 4149
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-sbc 2992  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861  df-rng 15340  df-lmod 15629  df-clm 18561
  Copyright terms: Public domain W3C validator