MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmlmod Structured version   Unicode version

Theorem clmlmod 19092
Description: A complex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.)
Assertion
Ref Expression
clmlmod  |-  ( W  e. CMod  ->  W  e.  LMod )

Proof of Theorem clmlmod
StepHypRef Expression
1 eqid 2436 . . 3  |-  (Scalar `  W )  =  (Scalar `  W )
2 eqid 2436 . . 3  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
31, 2isclm 19089 . 2  |-  ( W  e. CMod 
<->  ( W  e.  LMod  /\  (Scalar `  W )  =  (flds  (
Base `  (Scalar `  W
) ) )  /\  ( Base `  (Scalar `  W
) )  e.  (SubRing ` fld ) ) )
43simp1bi 972 1  |-  ( W  e. CMod  ->  W  e.  LMod )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1652    e. wcel 1725   ` cfv 5454  (class class class)co 6081   Basecbs 13469   ↾s cress 13470  Scalarcsca 13532  SubRingcsubrg 15864   LModclmod 15950  ℂfldccnfld 16703  CModcclm 19087
This theorem is referenced by:  clmgrp  19093  clmabl  19094  clmrng  19095  clmfgrp  19096  clmvsass  19112  clmvsdir  19113  clmvs1  19114  clm0vs  19115  clmvneg1  19116  clmvsneg  19117  clmsubdir  19119  zlmclm  19120
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-nul 4338
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-iota 5418  df-fv 5462  df-ov 6084  df-clm 19088
  Copyright terms: Public domain W3C validator