MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmvneg1 Unicode version

Theorem clmvneg1 19073
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (lmodvneg1 15946 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
clmvneg1.v  |-  V  =  ( Base `  W
)
clmvneg1.n  |-  N  =  ( inv g `  W )
clmvneg1.f  |-  F  =  (Scalar `  W )
clmvneg1.s  |-  .x.  =  ( .s `  W )
Assertion
Ref Expression
clmvneg1  |-  ( ( W  e. CMod  /\  X  e.  V )  ->  ( -u 1  .x.  X )  =  ( N `  X ) )

Proof of Theorem clmvneg1
StepHypRef Expression
1 clmvneg1.f . . . . . . . 8  |-  F  =  (Scalar `  W )
2 eqid 2408 . . . . . . . 8  |-  ( Base `  F )  =  (
Base `  F )
31, 2clmzss 19060 . . . . . . 7  |-  ( W  e. CMod  ->  ZZ  C_  ( Base `  F ) )
4 1z 10271 . . . . . . . 8  |-  1  e.  ZZ
54a1i 11 . . . . . . 7  |-  ( W  e. CMod  ->  1  e.  ZZ )
63, 5sseldd 3313 . . . . . 6  |-  ( W  e. CMod  ->  1  e.  (
Base `  F )
)
71, 2clmneg 19063 . . . . . 6  |-  ( ( W  e. CMod  /\  1  e.  ( Base `  F
) )  ->  -u 1  =  ( ( inv g `  F ) `
 1 ) )
86, 7mpdan 650 . . . . 5  |-  ( W  e. CMod  ->  -u 1  =  ( ( inv g `  F ) `  1
) )
91clm1 19055 . . . . . 6  |-  ( W  e. CMod  ->  1  =  ( 1r `  F ) )
109fveq2d 5695 . . . . 5  |-  ( W  e. CMod  ->  ( ( inv g `  F ) `
 1 )  =  ( ( inv g `  F ) `  ( 1r `  F ) ) )
118, 10eqtrd 2440 . . . 4  |-  ( W  e. CMod  ->  -u 1  =  ( ( inv g `  F ) `  ( 1r `  F ) ) )
1211adantr 452 . . 3  |-  ( ( W  e. CMod  /\  X  e.  V )  ->  -u 1  =  ( ( inv g `  F ) `
 ( 1r `  F ) ) )
1312oveq1d 6059 . 2  |-  ( ( W  e. CMod  /\  X  e.  V )  ->  ( -u 1  .x.  X )  =  ( ( ( inv g `  F
) `  ( 1r `  F ) )  .x.  X ) )
14 clmlmod 19049 . . 3  |-  ( W  e. CMod  ->  W  e.  LMod )
15 clmvneg1.v . . . 4  |-  V  =  ( Base `  W
)
16 clmvneg1.n . . . 4  |-  N  =  ( inv g `  W )
17 clmvneg1.s . . . 4  |-  .x.  =  ( .s `  W )
18 eqid 2408 . . . 4  |-  ( 1r
`  F )  =  ( 1r `  F
)
19 eqid 2408 . . . 4  |-  ( inv g `  F )  =  ( inv g `  F )
2015, 16, 1, 17, 18, 19lmodvneg1 15946 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( inv g `  F ) `  ( 1r `  F ) ) 
.x.  X )  =  ( N `  X
) )
2114, 20sylan 458 . 2  |-  ( ( W  e. CMod  /\  X  e.  V )  ->  (
( ( inv g `  F ) `  ( 1r `  F ) ) 
.x.  X )  =  ( N `  X
) )
2213, 21eqtrd 2440 1  |-  ( ( W  e. CMod  /\  X  e.  V )  ->  ( -u 1  .x.  X )  =  ( N `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   ` cfv 5417  (class class class)co 6044   1c1 8951   -ucneg 9252   ZZcz 10242   Basecbs 13428  Scalarcsca 13491   .scvsca 13492   inv gcminusg 14645   1rcur 15621   LModclmod 15909  CModcclm 19044
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-inf2 7556  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-addf 9029  ax-mulf 9030
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-oadd 6691  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-2 10018  df-3 10019  df-4 10020  df-5 10021  df-6 10022  df-7 10023  df-8 10024  df-9 10025  df-10 10026  df-n0 10182  df-z 10243  df-dec 10343  df-uz 10449  df-fz 11004  df-seq 11283  df-struct 13430  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-ress 13435  df-plusg 13501  df-mulr 13502  df-starv 13503  df-tset 13507  df-ple 13508  df-ds 13510  df-unif 13511  df-0g 13686  df-mnd 14649  df-grp 14771  df-minusg 14772  df-mulg 14774  df-subg 14900  df-cmn 15373  df-mgp 15608  df-rng 15622  df-cring 15623  df-ur 15624  df-subrg 15825  df-lmod 15911  df-cnfld 16663  df-clm 19045
  Copyright terms: Public domain W3C validator