MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clmvneg1 Unicode version

Theorem clmvneg1 18687
Description: Minus 1 times a vector is the negative of the vector. Equation 2 of [Kreyszig] p. 51. (lmodvneg1 15760 analog.) (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
clmvneg1.v  |-  V  =  ( Base `  W
)
clmvneg1.n  |-  N  =  ( inv g `  W )
clmvneg1.f  |-  F  =  (Scalar `  W )
clmvneg1.s  |-  .x.  =  ( .s `  W )
Assertion
Ref Expression
clmvneg1  |-  ( ( W  e. CMod  /\  X  e.  V )  ->  ( -u 1  .x.  X )  =  ( N `  X ) )

Proof of Theorem clmvneg1
StepHypRef Expression
1 clmvneg1.f . . . . . . . 8  |-  F  =  (Scalar `  W )
2 eqid 2358 . . . . . . . 8  |-  ( Base `  F )  =  (
Base `  F )
31, 2clmzss 18674 . . . . . . 7  |-  ( W  e. CMod  ->  ZZ  C_  ( Base `  F ) )
4 1z 10142 . . . . . . . 8  |-  1  e.  ZZ
54a1i 10 . . . . . . 7  |-  ( W  e. CMod  ->  1  e.  ZZ )
63, 5sseldd 3257 . . . . . 6  |-  ( W  e. CMod  ->  1  e.  (
Base `  F )
)
71, 2clmneg 18677 . . . . . 6  |-  ( ( W  e. CMod  /\  1  e.  ( Base `  F
) )  ->  -u 1  =  ( ( inv g `  F ) `
 1 ) )
86, 7mpdan 649 . . . . 5  |-  ( W  e. CMod  ->  -u 1  =  ( ( inv g `  F ) `  1
) )
91clm1 18669 . . . . . 6  |-  ( W  e. CMod  ->  1  =  ( 1r `  F ) )
109fveq2d 5609 . . . . 5  |-  ( W  e. CMod  ->  ( ( inv g `  F ) `
 1 )  =  ( ( inv g `  F ) `  ( 1r `  F ) ) )
118, 10eqtrd 2390 . . . 4  |-  ( W  e. CMod  ->  -u 1  =  ( ( inv g `  F ) `  ( 1r `  F ) ) )
1211adantr 451 . . 3  |-  ( ( W  e. CMod  /\  X  e.  V )  ->  -u 1  =  ( ( inv g `  F ) `
 ( 1r `  F ) ) )
1312oveq1d 5957 . 2  |-  ( ( W  e. CMod  /\  X  e.  V )  ->  ( -u 1  .x.  X )  =  ( ( ( inv g `  F
) `  ( 1r `  F ) )  .x.  X ) )
14 clmlmod 18663 . . 3  |-  ( W  e. CMod  ->  W  e.  LMod )
15 clmvneg1.v . . . 4  |-  V  =  ( Base `  W
)
16 clmvneg1.n . . . 4  |-  N  =  ( inv g `  W )
17 clmvneg1.s . . . 4  |-  .x.  =  ( .s `  W )
18 eqid 2358 . . . 4  |-  ( 1r
`  F )  =  ( 1r `  F
)
19 eqid 2358 . . . 4  |-  ( inv g `  F )  =  ( inv g `  F )
2015, 16, 1, 17, 18, 19lmodvneg1 15760 . . 3  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( ( inv g `  F ) `  ( 1r `  F ) ) 
.x.  X )  =  ( N `  X
) )
2114, 20sylan 457 . 2  |-  ( ( W  e. CMod  /\  X  e.  V )  ->  (
( ( inv g `  F ) `  ( 1r `  F ) ) 
.x.  X )  =  ( N `  X
) )
2213, 21eqtrd 2390 1  |-  ( ( W  e. CMod  /\  X  e.  V )  ->  ( -u 1  .x.  X )  =  ( N `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1642    e. wcel 1710   ` cfv 5334  (class class class)co 5942   1c1 8825   -ucneg 9125   ZZcz 10113   Basecbs 13239  Scalarcsca 13302   .scvsca 13303   inv gcminusg 14456   1rcur 15432   LModclmod 15720  CModcclm 18658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-rep 4210  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-inf2 7429  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-addf 8903  ax-mulf 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-int 3942  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-1st 6206  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-1o 6563  df-oadd 6567  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-fin 6952  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-nn 9834  df-2 9891  df-3 9892  df-4 9893  df-5 9894  df-6 9895  df-7 9896  df-8 9897  df-9 9898  df-10 9899  df-n0 10055  df-z 10114  df-dec 10214  df-uz 10320  df-fz 10872  df-seq 11136  df-struct 13241  df-ndx 13242  df-slot 13243  df-base 13244  df-sets 13245  df-ress 13246  df-plusg 13312  df-mulr 13313  df-starv 13314  df-tset 13318  df-ple 13319  df-ds 13321  df-unif 13322  df-0g 13497  df-mnd 14460  df-grp 14582  df-minusg 14583  df-mulg 14585  df-subg 14711  df-cmn 15184  df-mgp 15419  df-rng 15433  df-cring 15434  df-ur 15435  df-subrg 15636  df-lmod 15722  df-cnfld 16477  df-clm 18659
  Copyright terms: Public domain W3C validator