MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clscld Unicode version

Theorem clscld 16784
Description: The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
clscld  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  e.  ( Clsd `  J
) )

Proof of Theorem clscld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 clscld.1 . . 3  |-  X  = 
U. J
21clsval 16774 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  =  |^| { x  e.  ( Clsd `  J
)  |  S  C_  x } )
31topcld 16772 . . . . . 6  |-  ( J  e.  Top  ->  X  e.  ( Clsd `  J
) )
43anim1i 551 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  e.  (
Clsd `  J )  /\  S  C_  X ) )
5 sseq2 3200 . . . . . 6  |-  ( x  =  X  ->  ( S  C_  x  <->  S  C_  X
) )
65elrab 2923 . . . . 5  |-  ( X  e.  { x  e.  ( Clsd `  J
)  |  S  C_  x }  <->  ( X  e.  ( Clsd `  J
)  /\  S  C_  X
) )
74, 6sylibr 203 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  X  e.  { x  e.  ( Clsd `  J
)  |  S  C_  x } )
8 ne0i 3461 . . . 4  |-  ( X  e.  { x  e.  ( Clsd `  J
)  |  S  C_  x }  ->  { x  e.  ( Clsd `  J
)  |  S  C_  x }  =/=  (/) )
97, 8syl 15 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  { x  e.  ( Clsd `  J )  |  S  C_  x }  =/=  (/) )
10 ssrab2 3258 . . 3  |-  { x  e.  ( Clsd `  J
)  |  S  C_  x }  C_  ( Clsd `  J )
11 intcld 16777 . . 3  |-  ( ( { x  e.  (
Clsd `  J )  |  S  C_  x }  =/=  (/)  /\  { x  e.  ( Clsd `  J
)  |  S  C_  x }  C_  ( Clsd `  J ) )  ->  |^| { x  e.  (
Clsd `  J )  |  S  C_  x }  e.  ( Clsd `  J
) )
129, 10, 11sylancl 643 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  |^| { x  e.  (
Clsd `  J )  |  S  C_  x }  e.  ( Clsd `  J
) )
132, 12eqeltrd 2357 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( cls `  J
) `  S )  e.  ( Clsd `  J
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   {crab 2547    C_ wss 3152   (/)c0 3455   U.cuni 3827   |^|cint 3862   ` cfv 5255   Topctop 16631   Clsdccld 16753   clsccl 16755
This theorem is referenced by:  clsf  16785  clsss3  16796  cmntrcld  16800  iscld3  16801  clsidm  16804  restcls  16911  cncls2i  16999  nrmsep  17085  lpcls  17092  regsep2  17104  hauscmplem  17133  hausllycmp  17220  txcls  17299  ptclsg  17309  regr1lem  17430  kqreglem1  17432  kqreglem2  17433  kqnrmlem1  17434  kqnrmlem2  17435  fclscmpi  17724  tgptsmscld  17833  cnllycmp  18454  clsocv  18677  cmpcmet  18743  cncmet  18744  limcnlp  19228  clsun  26246  cldregopn  26249  heibor1lem  26533
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-iin 3908  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-top 16636  df-cld 16756  df-cls 16758
  Copyright terms: Public domain W3C validator