MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clsnsg Unicode version

Theorem clsnsg 18096
Description: The closure of a normal subgroup is a normal subgroup. (Contributed by Mario Carneiro, 17-Sep-2015.)
Hypothesis
Ref Expression
subgntr.h  |-  J  =  ( TopOpen `  G )
Assertion
Ref Expression
clsnsg  |-  ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G )
)  ->  ( ( cls `  J ) `  S )  e.  (NrmSGrp `  G ) )

Proof of Theorem clsnsg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nsgsubg 14931 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
2 subgntr.h . . . 4  |-  J  =  ( TopOpen `  G )
32clssubg 18095 . . 3  |-  ( ( G  e.  TopGrp  /\  S  e.  (SubGrp `  G )
)  ->  ( ( cls `  J ) `  S )  e.  (SubGrp `  G ) )
41, 3sylan2 461 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G )
)  ->  ( ( cls `  J ) `  S )  e.  (SubGrp `  G ) )
5 df-ima 4854 . . . . . . 7  |-  ( ( y  e.  ( Base `  G )  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) "
( ( cls `  J
) `  S )
)  =  ran  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  |`  ( ( cls `  J ) `  S ) )
6 eqid 2408 . . . . . . . . . . . . . 14  |-  ( Base `  G )  =  (
Base `  G )
72, 6tgptopon 18069 . . . . . . . . . . . . 13  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  ( Base `  G
) ) )
87ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  J  e.  (TopOn `  ( Base `  G ) ) )
9 topontop 16950 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  J  e.  Top )
108, 9syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  J  e.  Top )
111ad2antlr 708 . . . . . . . . . . . . 13  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  S  e.  (SubGrp `  G )
)
126subgss 14904 . . . . . . . . . . . . 13  |-  ( S  e.  (SubGrp `  G
)  ->  S  C_  ( Base `  G ) )
1311, 12syl 16 . . . . . . . . . . . 12  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  S  C_  ( Base `  G
) )
14 toponuni 16951 . . . . . . . . . . . . 13  |-  ( J  e.  (TopOn `  ( Base `  G ) )  ->  ( Base `  G
)  =  U. J
)
158, 14syl 16 . . . . . . . . . . . 12  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  ( Base `  G )  = 
U. J )
1613, 15sseqtrd 3348 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  S  C_ 
U. J )
17 eqid 2408 . . . . . . . . . . . 12  |-  U. J  =  U. J
1817clsss3 17082 . . . . . . . . . . 11  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( ( cls `  J ) `  S
)  C_  U. J )
1910, 16, 18syl2anc 643 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( cls `  J
) `  S )  C_ 
U. J )
2019, 15sseqtr4d 3349 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( cls `  J
) `  S )  C_  ( Base `  G
) )
21 resmpt 5154 . . . . . . . . 9  |-  ( ( ( cls `  J
) `  S )  C_  ( Base `  G
)  ->  ( (
y  e.  ( Base `  G )  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  |`  ( ( cls `  J
) `  S )
)  =  ( y  e.  ( ( cls `  J ) `  S
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) )
2220, 21syl 16 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  |`  ( ( cls `  J ) `  S ) )  =  ( y  e.  ( ( cls `  J
) `  S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) )
2322rneqd 5060 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  ran  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  |`  ( ( cls `  J
) `  S )
)  =  ran  (
y  e.  ( ( cls `  J ) `
 S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) )
245, 23syl5eq 2452 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) " ( ( cls `  J ) `
 S ) )  =  ran  ( y  e.  ( ( cls `  J ) `  S
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) )
25 eqid 2408 . . . . . . . . . 10  |-  ( +g  `  G )  =  ( +g  `  G )
26 tgptmd 18066 . . . . . . . . . . 11  |-  ( G  e.  TopGrp  ->  G  e. TopMnd )
2726ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  G  e. TopMnd )
28 simpr 448 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  x  e.  ( Base `  G
) )
298, 8, 28cnmptc 17651 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
y  e.  ( Base `  G )  |->  x )  e.  ( J  Cn  J ) )
308cnmptid 17650 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
y  e.  ( Base `  G )  |->  y )  e.  ( J  Cn  J ) )
312, 25, 27, 8, 29, 30cnmpt1plusg 18074 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
y  e.  ( Base `  G )  |->  ( x ( +g  `  G
) y ) )  e.  ( J  Cn  J ) )
32 eqid 2408 . . . . . . . . . . 11  |-  ( -g `  G )  =  (
-g `  G )
332, 32tgpsubcn 18077 . . . . . . . . . 10  |-  ( G  e.  TopGrp  ->  ( -g `  G
)  e.  ( ( J  tX  J )  Cn  J ) )
3433ad2antrr 707 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  ( -g `  G )  e.  ( ( J  tX  J )  Cn  J
) )
358, 31, 29, 34cnmpt12f 17655 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
y  e.  ( Base `  G )  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  e.  ( J  Cn  J
) )
3617cnclsi 17294 . . . . . . . 8  |-  ( ( ( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  e.  ( J  Cn  J )  /\  S  C_  U. J )  ->  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) "
( ( cls `  J
) `  S )
)  C_  ( ( cls `  J ) `  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) " S ) ) )
3735, 16, 36syl2anc 643 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) " ( ( cls `  J ) `
 S ) ) 
C_  ( ( cls `  J ) `  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) " S ) ) )
38 df-ima 4854 . . . . . . . . . 10  |-  ( ( y  e.  ( Base `  G )  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) " S )  =  ran  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  |`  S )
39 resmpt 5154 . . . . . . . . . . . 12  |-  ( S 
C_  ( Base `  G
)  ->  ( (
y  e.  ( Base `  G )  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  |`  S )  =  ( y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) )
4013, 39syl 16 . . . . . . . . . . 11  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  |`  S )  =  ( y  e.  S  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) )
4140rneqd 5060 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  ran  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  |`  S )  =  ran  ( y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) )
4238, 41syl5eq 2452 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) " S )  =  ran  ( y  e.  S  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) )
436, 25, 32nsgconj 14932 . . . . . . . . . . . . 13  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  x  e.  ( Base `  G )  /\  y  e.  S
)  ->  ( (
x ( +g  `  G
) y ) (
-g `  G )
x )  e.  S
)
44433expa 1153 . . . . . . . . . . . 12  |-  ( ( ( S  e.  (NrmSGrp `  G )  /\  x  e.  ( Base `  G
) )  /\  y  e.  S )  ->  (
( x ( +g  `  G ) y ) ( -g `  G
) x )  e.  S )
4544adantlll 699 . . . . . . . . . . 11  |-  ( ( ( ( G  e. 
TopGrp  /\  S  e.  (NrmSGrp `  G ) )  /\  x  e.  ( Base `  G ) )  /\  y  e.  S )  ->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  S )
46 eqid 2408 . . . . . . . . . . 11  |-  ( y  e.  S  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  =  ( y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )
4745, 46fmptd 5856 . . . . . . . . . 10  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) : S --> S )
48 frn 5560 . . . . . . . . . 10  |-  ( ( y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) : S --> S  ->  ran  ( y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  C_  S )
4947, 48syl 16 . . . . . . . . 9  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  ran  ( y  e.  S  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  C_  S )
5042, 49eqsstrd 3346 . . . . . . . 8  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) " S ) 
C_  S )
5117clsss 17077 . . . . . . . 8  |-  ( ( J  e.  Top  /\  S  C_  U. J  /\  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) " S )  C_  S
)  ->  ( ( cls `  J ) `  ( ( y  e.  ( Base `  G
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) " S ) )  C_  ( ( cls `  J
) `  S )
)
5210, 16, 50, 51syl3anc 1184 . . . . . . 7  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( cls `  J
) `  ( (
y  e.  ( Base `  G )  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) ) " S ) )  C_  ( ( cls `  J
) `  S )
)
5337, 52sstrd 3322 . . . . . 6  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
( y  e.  (
Base `  G )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) ) " ( ( cls `  J ) `
 S ) ) 
C_  ( ( cls `  J ) `  S
) )
5424, 53eqsstr3d 3347 . . . . 5  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  ran  ( y  e.  ( ( cls `  J
) `  S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  C_  ( ( cls `  J ) `  S ) )
55 ovex 6069 . . . . . . 7  |-  ( ( x ( +g  `  G
) y ) (
-g `  G )
x )  e.  _V
56 eqid 2408 . . . . . . 7  |-  ( y  e.  ( ( cls `  J ) `  S
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  =  ( y  e.  ( ( cls `  J
) `  S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )
5755, 56fnmpti 5536 . . . . . 6  |-  ( y  e.  ( ( cls `  J ) `  S
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  Fn  ( ( cls `  J
) `  S )
58 df-f 5421 . . . . . 6  |-  ( ( y  e.  ( ( cls `  J ) `
 S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) : ( ( cls `  J ) `  S
) --> ( ( cls `  J ) `  S
)  <->  ( ( y  e.  ( ( cls `  J ) `  S
)  |->  ( ( x ( +g  `  G
) y ) (
-g `  G )
x ) )  Fn  ( ( cls `  J
) `  S )  /\  ran  ( y  e.  ( ( cls `  J
) `  S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  C_  ( ( cls `  J ) `  S ) ) )
5957, 58mpbiran 885 . . . . 5  |-  ( ( y  e.  ( ( cls `  J ) `
 S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) : ( ( cls `  J ) `  S
) --> ( ( cls `  J ) `  S
)  <->  ran  ( y  e.  ( ( cls `  J
) `  S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G ) x ) )  C_  ( ( cls `  J ) `  S ) )
6054, 59sylibr 204 . . . 4  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  (
y  e.  ( ( cls `  J ) `
 S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) : ( ( cls `  J ) `  S
) --> ( ( cls `  J ) `  S
) )
6156fmpt 5853 . . . 4  |-  ( A. y  e.  ( ( cls `  J ) `  S ) ( ( x ( +g  `  G
) y ) (
-g `  G )
x )  e.  ( ( cls `  J
) `  S )  <->  ( y  e.  ( ( cls `  J ) `
 S )  |->  ( ( x ( +g  `  G ) y ) ( -g `  G
) x ) ) : ( ( cls `  J ) `  S
) --> ( ( cls `  J ) `  S
) )
6260, 61sylibr 204 . . 3  |-  ( ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G
) )  /\  x  e.  ( Base `  G
) )  ->  A. y  e.  ( ( cls `  J
) `  S )
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  ( ( cls `  J ) `  S
) )
6362ralrimiva 2753 . 2  |-  ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G )
)  ->  A. x  e.  ( Base `  G
) A. y  e.  ( ( cls `  J
) `  S )
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  ( ( cls `  J ) `  S
) )
646, 25, 32isnsg3 14933 . 2  |-  ( ( ( cls `  J
) `  S )  e.  (NrmSGrp `  G )  <->  ( ( ( cls `  J
) `  S )  e.  (SubGrp `  G )  /\  A. x  e.  (
Base `  G ) A. y  e.  (
( cls `  J
) `  S )
( ( x ( +g  `  G ) y ) ( -g `  G ) x )  e.  ( ( cls `  J ) `  S
) ) )
654, 63, 64sylanbrc 646 1  |-  ( ( G  e.  TopGrp  /\  S  e.  (NrmSGrp `  G )
)  ->  ( ( cls `  J ) `  S )  e.  (NrmSGrp `  G ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2670    C_ wss 3284   U.cuni 3979    e. cmpt 4230   ran crn 4842    |` cres 4843   "cima 4844    Fn wfn 5412   -->wf 5413   ` cfv 5417  (class class class)co 6044   Basecbs 13428   +g cplusg 13488   TopOpenctopn 13608   -gcsg 14647  SubGrpcsubg 14897  NrmSGrpcnsg 14898   Topctop 16917  TopOnctopon 16918   clsccl 17041    Cn ccn 17246    tX ctx 17549  TopMndctmd 18057   TopGrpctgp 18058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-rep 4284  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-iin 4060  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-er 6868  df-map 6983  df-en 7073  df-dom 7074  df-sdom 7075  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-nn 9961  df-2 10018  df-ndx 13431  df-slot 13432  df-base 13433  df-sets 13434  df-ress 13435  df-plusg 13501  df-topgen 13626  df-0g 13686  df-mnd 14649  df-plusf 14650  df-grp 14771  df-minusg 14772  df-sbg 14773  df-subg 14900  df-nsg 14901  df-top 16922  df-bases 16924  df-topon 16925  df-topsp 16926  df-cld 17042  df-ntr 17043  df-cls 17044  df-cn 17249  df-cnp 17250  df-tx 17551  df-tmd 18059  df-tgp 18060
  Copyright terms: Public domain W3C validator