MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmetcaulem Unicode version

Theorem cmetcaulem 18730
Description: Lemma for cmetcau 18731. (Contributed by Mario Carneiro, 14-Oct-2015.)
Hypotheses
Ref Expression
cmetcau.1  |-  J  =  ( MetOpen `  D )
cmetcau.3  |-  ( ph  ->  D  e.  ( CMet `  X ) )
cmetcau.4  |-  ( ph  ->  P  e.  X )
cmetcau.5  |-  ( ph  ->  F  e.  ( Cau `  D ) )
cmetcau.6  |-  G  =  ( x  e.  NN  |->  if ( x  e.  dom  F ,  ( F `  x ) ,  P
) )
Assertion
Ref Expression
cmetcaulem  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Distinct variable groups:    x, D    x, F    x, P    x, J    ph, x    x, X
Allowed substitution hint:    G( x)

Proof of Theorem cmetcaulem
Dummy variables  j 
k  m  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmetcau.3 . . . . . . . . 9  |-  ( ph  ->  D  e.  ( CMet `  X ) )
2 cmetmet 18728 . . . . . . . . 9  |-  ( D  e.  ( CMet `  X
)  ->  D  e.  ( Met `  X ) )
31, 2syl 15 . . . . . . . 8  |-  ( ph  ->  D  e.  ( Met `  X ) )
4 metxmet 17915 . . . . . . . 8  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( * Met `  X
) )
53, 4syl 15 . . . . . . 7  |-  ( ph  ->  D  e.  ( * Met `  X ) )
6 cmetcau.1 . . . . . . . 8  |-  J  =  ( MetOpen `  D )
76mopntopon 18001 . . . . . . 7  |-  ( D  e.  ( * Met `  X )  ->  J  e.  (TopOn `  X )
)
85, 7syl 15 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
9 1z 10069 . . . . . . . 8  |-  1  e.  ZZ
10 nnuz 10279 . . . . . . . . 9  |-  NN  =  ( ZZ>= `  1 )
1110uzfbas 17609 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  ( ZZ>=
" NN )  e.  ( fBas `  NN ) )
129, 11mp1i 11 . . . . . . 7  |-  ( ph  ->  ( ZZ>= " NN )  e.  ( fBas `  NN ) )
13 fgcl 17589 . . . . . . 7  |-  ( (
ZZ>= " NN )  e.  ( fBas `  NN )  ->  ( NN filGen (
ZZ>= " NN ) )  e.  ( Fil `  NN ) )
1412, 13syl 15 . . . . . 6  |-  ( ph  ->  ( NN filGen ( ZZ>= " NN ) )  e.  ( Fil `  NN ) )
15 elfvdm 5570 . . . . . . . . . . . 12  |-  ( D  e.  ( CMet `  X
)  ->  X  e.  dom  CMet )
161, 15syl 15 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  dom  CMet )
17 cnex 8834 . . . . . . . . . . . 12  |-  CC  e.  _V
1817a1i 10 . . . . . . . . . . 11  |-  ( ph  ->  CC  e.  _V )
19 cmetcau.5 . . . . . . . . . . . 12  |-  ( ph  ->  F  e.  ( Cau `  D ) )
20 caufpm 18724 . . . . . . . . . . . 12  |-  ( ( D  e.  ( * Met `  X )  /\  F  e.  ( Cau `  D ) )  ->  F  e.  ( X  ^pm  CC ) )
215, 19, 20syl2anc 642 . . . . . . . . . . 11  |-  ( ph  ->  F  e.  ( X 
^pm  CC ) )
22 elpm2g 6803 . . . . . . . . . . . 12  |-  ( ( X  e.  dom  CMet  /\  CC  e.  _V )  ->  ( F  e.  ( X  ^pm  CC )  <->  ( F : dom  F --> X  /\  dom  F  C_  CC ) ) )
2322simprbda 606 . . . . . . . . . . 11  |-  ( ( ( X  e.  dom  CMet  /\  CC  e.  _V )  /\  F  e.  ( X  ^pm  CC ) )  ->  F : dom  F --> X )
2416, 18, 21, 23syl21anc 1181 . . . . . . . . . 10  |-  ( ph  ->  F : dom  F --> X )
2524adantr 451 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  NN )  ->  F : dom  F --> X )
26 ffvelrn 5679 . . . . . . . . 9  |-  ( ( F : dom  F --> X  /\  x  e.  dom  F )  ->  ( F `  x )  e.  X
)
2725, 26sylan 457 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  NN )  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  X )
28 cmetcau.4 . . . . . . . . 9  |-  ( ph  ->  P  e.  X )
2928ad2antrr 706 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  NN )  /\  -.  x  e.  dom  F )  ->  P  e.  X
)
3027, 29ifclda 3605 . . . . . . 7  |-  ( (
ph  /\  x  e.  NN )  ->  if ( x  e.  dom  F ,  ( F `  x ) ,  P
)  e.  X )
31 cmetcau.6 . . . . . . 7  |-  G  =  ( x  e.  NN  |->  if ( x  e.  dom  F ,  ( F `  x ) ,  P
) )
3230, 31fmptd 5700 . . . . . 6  |-  ( ph  ->  G : NN --> X )
33 flfval 17701 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  ( NN filGen ( ZZ>= " NN ) )  e.  ( Fil `  NN )  /\  G : NN --> X )  ->  (
( J  fLimf  ( NN
filGen ( ZZ>= " NN ) ) ) `  G )  =  ( J  fLim  ( ( X  FilMap  G ) `
 ( NN filGen (
ZZ>= " NN ) ) ) ) )
348, 14, 32, 33syl3anc 1182 . . . . 5  |-  ( ph  ->  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G )  =  ( J  fLim  ( ( X  FilMap  G ) `  ( NN filGen ( ZZ>= " NN ) ) ) ) )
35 eqid 2296 . . . . . . . 8  |-  ( NN
filGen ( ZZ>= " NN ) )  =  ( NN filGen (
ZZ>= " NN ) )
3635fmfg 17660 . . . . . . 7  |-  ( ( X  e.  dom  CMet  /\  ( ZZ>= " NN )  e.  ( fBas `  NN )  /\  G : NN --> X )  ->  (
( X  FilMap  G ) `
 ( ZZ>= " NN ) )  =  ( ( X  FilMap  G ) `
 ( NN filGen (
ZZ>= " NN ) ) ) )
3716, 12, 32, 36syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( ( X  FilMap  G ) `  ( ZZ>= " NN ) )  =  ( ( X  FilMap  G ) `
 ( NN filGen (
ZZ>= " NN ) ) ) )
3837oveq2d 5890 . . . . 5  |-  ( ph  ->  ( J  fLim  (
( X  FilMap  G ) `
 ( ZZ>= " NN ) ) )  =  ( J  fLim  (
( X  FilMap  G ) `
 ( NN filGen (
ZZ>= " NN ) ) ) ) )
3934, 38eqtr4d 2331 . . . 4  |-  ( ph  ->  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G )  =  ( J  fLim  ( ( X  FilMap  G ) `  ( ZZ>= " NN ) ) ) )
40 1rp 10374 . . . . . . . 8  |-  1  e.  RR+
419a1i 10 . . . . . . . . . . . 12  |-  ( ph  ->  1  e.  ZZ )
4210, 5, 41iscau3 18720 . . . . . . . . . . 11  |-  ( ph  ->  ( F  e.  ( Cau `  D )  <-> 
( F  e.  ( X  ^pm  CC )  /\  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. w  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  w ) )  < 
z ) ) ) )
4342simplbda 607 . . . . . . . . . 10  |-  ( (
ph  /\  F  e.  ( Cau `  D ) )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. w  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 w ) )  <  z ) )
4419, 43mpdan 649 . . . . . . . . 9  |-  ( ph  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. w  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  w ) )  < 
z ) )
45 simp1 955 . . . . . . . . . . . 12  |-  ( ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  A. w  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  w ) )  < 
z )  ->  k  e.  dom  F )
4645ralimi 2631 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. w  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  w ) )  < 
z )  ->  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F
)
4746reximi 2663 . . . . . . . . . 10  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. w  e.  ( ZZ>= `  k ) ( ( F `  k ) D ( F `  w ) )  < 
z )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F
)
4847ralimi 2631 . . . . . . . . 9  |-  ( A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  A. w  e.  (
ZZ>= `  k ) ( ( F `  k
) D ( F `
 w ) )  <  z )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F
)
4944, 48syl 15 . . . . . . . 8  |-  ( ph  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F )
50 biidd 228 . . . . . . . . 9  |-  ( z  =  1  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F ) )
5150rspcv 2893 . . . . . . . 8  |-  ( 1  e.  RR+  ->  ( A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F ) )
5240, 49, 51mpsyl 59 . . . . . . 7  |-  ( ph  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F )
53 dfss3 3183 . . . . . . . . 9  |-  ( (
ZZ>= `  j )  C_  dom  F  <->  A. k  e.  (
ZZ>= `  j ) k  e.  dom  F )
54 nnsscn 9767 . . . . . . . . . . . . . 14  |-  NN  C_  CC
5532, 54jctir 524 . . . . . . . . . . . . 13  |-  ( ph  ->  ( G : NN --> X  /\  NN  C_  CC ) )
56 elpm2r 6804 . . . . . . . . . . . . 13  |-  ( ( ( X  e.  dom  CMet  /\  CC  e.  _V )  /\  ( G : NN --> X  /\  NN  C_  CC ) )  ->  G  e.  ( X  ^pm  CC ) )
5716, 18, 55, 56syl21anc 1181 . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  ( X 
^pm  CC ) )
5857adantr 451 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  G  e.  ( X  ^pm  CC ) )
5919adantr 451 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  F  e.  ( Cau `  D
) )
60 eqid 2296 . . . . . . . . . . . . . . 15  |-  ( ZZ>= `  j )  =  (
ZZ>= `  j )
615adantr 451 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  D  e.  ( * Met `  X
) )
62 nnz 10061 . . . . . . . . . . . . . . . 16  |-  ( j  e.  NN  ->  j  e.  ZZ )
6362ad2antrl 708 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  j  e.  ZZ )
64 eqidd 2297 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( F `  k )  =  ( F `  k ) )
65 eqidd 2297 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( F `  m )  =  ( F `  m ) )
6660, 61, 63, 64, 65iscau4 18721 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  ( F  e.  ( Cau `  D )  <->  ( F  e.  ( X  ^pm  CC )  /\  A. z  e.  RR+  E. m  e.  (
ZZ>= `  j ) A. k  e.  ( ZZ>= `  m ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z ) ) ) )
6766simplbda 607 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  F  e.  ( Cau `  D ) )  ->  A. z  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. k  e.  ( ZZ>=
`  m ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) )
6859, 67mpdan 649 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  A. z  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. k  e.  ( ZZ>=
`  m ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) )
69 simprl 732 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  j  e.  NN )
7010uztrn2 10261 . . . . . . . . . . . . . . . 16  |-  ( ( j  e.  NN  /\  m  e.  ( ZZ>= `  j ) )  ->  m  e.  NN )
7169, 70sylan 457 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  m  e.  NN )
7210uztrn2 10261 . . . . . . . . . . . . . . . . . 18  |-  ( ( m  e.  NN  /\  k  e.  ( ZZ>= `  m ) )  -> 
k  e.  NN )
73 fdm 5409 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( G : NN --> X  ->  dom  G  =  NN )
7432, 73syl 15 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  dom  G  =  NN )
7574adantr 451 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  dom  G  =  NN )
7675eleq2d 2363 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  (
k  e.  dom  G  <->  k  e.  NN ) )
7776biimpar 471 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  NN )  ->  k  e.  dom  G )
7877a1d 22 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  NN )  ->  ( k  e. 
dom  F  ->  k  e. 
dom  G ) )
79 idd 21 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  NN )  ->  ( ( F `
 k )  e.  X  ->  ( F `  k )  e.  X
) )
80 idd 21 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  NN )  ->  ( ( ( F `  k ) D ( F `  m ) )  < 
z  ->  ( ( F `  k ) D ( F `  m ) )  < 
z ) )
8178, 79, 803anim123d 1259 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  NN )  ->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z )  -> 
( k  e.  dom  G  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) ) )
8272, 81sylan2 460 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  ( m  e.  NN  /\  k  e.  ( ZZ>= `  m )
) )  ->  (
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z )  ->  ( k  e. 
dom  G  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z ) ) )
8382anassrs 629 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  m ) )  ->  ( ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z )  -> 
( k  e.  dom  G  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) ) )
8483ralimdva 2634 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  m )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z )  ->  A. k  e.  (
ZZ>= `  m ) ( k  e.  dom  G  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) ) )
8571, 84syldan 456 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( A. k  e.  ( ZZ>= `  m )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z )  ->  A. k  e.  (
ZZ>= `  m ) ( k  e.  dom  G  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) ) )
8685reximdva 2668 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  ( E. m  e.  ( ZZ>=
`  j ) A. k  e.  ( ZZ>= `  m ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z )  ->  E. m  e.  ( ZZ>=
`  j ) A. k  e.  ( ZZ>= `  m ) ( k  e.  dom  G  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z ) ) )
8786ralimdv 2635 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  ( A. z  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. k  e.  ( ZZ>=
`  m ) ( k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z )  ->  A. z  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. k  e.  ( ZZ>= `  m )
( k  e.  dom  G  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) ) )
8868, 87mpd 14 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  A. z  e.  RR+  E. m  e.  ( ZZ>= `  j ) A. k  e.  ( ZZ>=
`  m ) ( k  e.  dom  G  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D ( F `  m ) )  <  z ) )
8910uztrn2 10261 . . . . . . . . . . . . . 14  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
9069, 89sylan 457 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  k  e.  NN )
91 simprr 733 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  ( ZZ>=
`  j )  C_  dom  F )
9291sselda 3193 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  k  e.  dom  F )
93 iftrue 3584 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  dom  F  ->  if ( k  e.  dom  F ,  ( F `  k ) ,  P
)  =  ( F `
 k ) )
9493adantl 452 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  NN  /\  k  e.  dom  F )  ->  if ( k  e.  dom  F , 
( F `  k
) ,  P )  =  ( F `  k ) )
95 fvex 5555 . . . . . . . . . . . . . . . 16  |-  ( F `
 k )  e. 
_V
9694, 95syl6eqel 2384 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  /\  k  e.  dom  F )  ->  if ( k  e.  dom  F , 
( F `  k
) ,  P )  e.  _V )
97 eleq1 2356 . . . . . . . . . . . . . . . . 17  |-  ( x  =  k  ->  (
x  e.  dom  F  <->  k  e.  dom  F ) )
98 fveq2 5541 . . . . . . . . . . . . . . . . 17  |-  ( x  =  k  ->  ( F `  x )  =  ( F `  k ) )
99 eqidd 2297 . . . . . . . . . . . . . . . . 17  |-  ( x  =  k  ->  P  =  P )
10097, 98, 99ifbieq12d 3600 . . . . . . . . . . . . . . . 16  |-  ( x  =  k  ->  if ( x  e.  dom  F ,  ( F `  x ) ,  P
)  =  if ( k  e.  dom  F ,  ( F `  k ) ,  P
) )
101100, 31fvmptg 5616 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  NN  /\  if ( k  e.  dom  F ,  ( F `  k ) ,  P
)  e.  _V )  ->  ( G `  k
)  =  if ( k  e.  dom  F ,  ( F `  k ) ,  P
) )
10296, 101syldan 456 . . . . . . . . . . . . . 14  |-  ( ( k  e.  NN  /\  k  e.  dom  F )  ->  ( G `  k )  =  if ( k  e.  dom  F ,  ( F `  k ) ,  P
) )
103102, 94eqtrd 2328 . . . . . . . . . . . . 13  |-  ( ( k  e.  NN  /\  k  e.  dom  F )  ->  ( G `  k )  =  ( F `  k ) )
10490, 92, 103syl2anc 642 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( G `  k )  =  ( F `  k ) )
10591sselda 3193 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  m  e.  dom  F )
106 elin 3371 . . . . . . . . . . . . . 14  |-  ( m  e.  ( NN  i^i  dom 
F )  <->  ( m  e.  NN  /\  m  e. 
dom  F ) )
10771, 105, 106sylanbrc 645 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  m  e.  ( NN  i^i  dom  F
) )
108 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  ( G `  k )  =  ( G `  m ) )
109 fveq2 5541 . . . . . . . . . . . . . . 15  |-  ( k  =  m  ->  ( F `  k )  =  ( F `  m ) )
110108, 109eqeq12d 2310 . . . . . . . . . . . . . 14  |-  ( k  =  m  ->  (
( G `  k
)  =  ( F `
 k )  <->  ( G `  m )  =  ( F `  m ) ) )
111 elin 3371 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( NN  i^i  dom 
F )  <->  ( k  e.  NN  /\  k  e. 
dom  F ) )
112111, 103sylbi 187 . . . . . . . . . . . . . 14  |-  ( k  e.  ( NN  i^i  dom 
F )  ->  ( G `  k )  =  ( F `  k ) )
113110, 112vtoclga 2862 . . . . . . . . . . . . 13  |-  ( m  e.  ( NN  i^i  dom 
F )  ->  ( G `  m )  =  ( F `  m ) )
114107, 113syl 15 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
j  e.  NN  /\  ( ZZ>= `  j )  C_ 
dom  F ) )  /\  m  e.  (
ZZ>= `  j ) )  ->  ( G `  m )  =  ( F `  m ) )
11560, 61, 63, 104, 114iscau4 18721 . . . . . . . . . . 11  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  ( G  e.  ( Cau `  D )  <->  ( G  e.  ( X  ^pm  CC )  /\  A. z  e.  RR+  E. m  e.  (
ZZ>= `  j ) A. k  e.  ( ZZ>= `  m ) ( k  e.  dom  G  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D ( F `
 m ) )  <  z ) ) ) )
11658, 88, 115mpbir2and 888 . . . . . . . . . 10  |-  ( (
ph  /\  ( j  e.  NN  /\  ( ZZ>= `  j )  C_  dom  F ) )  ->  G  e.  ( Cau `  D
) )
117116expr 598 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  NN )  ->  ( (
ZZ>= `  j )  C_  dom  F  ->  G  e.  ( Cau `  D ) ) )
11853, 117syl5bir 209 . . . . . . . 8  |-  ( (
ph  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F  ->  G  e.  ( Cau `  D
) ) )
119118rexlimdva 2680 . . . . . . 7  |-  ( ph  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  ->  G  e.  ( Cau `  D ) ) )
12052, 119mpd 14 . . . . . 6  |-  ( ph  ->  G  e.  ( Cau `  D ) )
121 eqid 2296 . . . . . . . 8  |-  ( ( X  FilMap  G ) `  ( ZZ>= " NN ) )  =  ( ( X 
FilMap  G ) `  ( ZZ>=
" NN ) )
12210, 121caucfil 18725 . . . . . . 7  |-  ( ( D  e.  ( * Met `  X )  /\  1  e.  ZZ  /\  G : NN --> X )  ->  ( G  e.  ( Cau `  D
)  <->  ( ( X 
FilMap  G ) `  ( ZZ>=
" NN ) )  e.  (CauFil `  D
) ) )
1235, 41, 32, 122syl3anc 1182 . . . . . 6  |-  ( ph  ->  ( G  e.  ( Cau `  D )  <-> 
( ( X  FilMap  G ) `  ( ZZ>= " NN ) )  e.  (CauFil `  D ) ) )
124120, 123mpbid 201 . . . . 5  |-  ( ph  ->  ( ( X  FilMap  G ) `  ( ZZ>= " NN ) )  e.  (CauFil `  D ) )
1256cmetcvg 18727 . . . . 5  |-  ( ( D  e.  ( CMet `  X )  /\  (
( X  FilMap  G ) `
 ( ZZ>= " NN ) )  e.  (CauFil `  D ) )  -> 
( J  fLim  (
( X  FilMap  G ) `
 ( ZZ>= " NN ) ) )  =/=  (/) )
1261, 124, 125syl2anc 642 . . . 4  |-  ( ph  ->  ( J  fLim  (
( X  FilMap  G ) `
 ( ZZ>= " NN ) ) )  =/=  (/) )
12739, 126eqnetrd 2477 . . 3  |-  ( ph  ->  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G )  =/=  (/) )
128 n0 3477 . . 3  |-  ( ( ( J  fLimf  ( NN
filGen ( ZZ>= " NN ) ) ) `  G )  =/=  (/)  <->  E. y  y  e.  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G ) )
129127, 128sylib 188 . 2  |-  ( ph  ->  E. y  y  e.  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G ) )
13010, 35lmflf 17716 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  1  e.  ZZ  /\  G : NN
--> X )  ->  ( G ( ~~> t `  J ) y  <->  y  e.  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G ) ) )
1318, 41, 32, 130syl3anc 1182 . . . 4  |-  ( ph  ->  ( G ( ~~> t `  J ) y  <->  y  e.  ( ( J  fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G ) ) )
13221adantr 451 . . . . . . 7  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  F  e.  ( X  ^pm  CC ) )
133 lmcl 17041 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  G
( ~~> t `  J
) y )  -> 
y  e.  X )
1348, 133sylan 457 . . . . . . 7  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  y  e.  X )
1356, 5, 10, 41lmmbr3 18702 . . . . . . . . . 10  |-  ( ph  ->  ( G ( ~~> t `  J ) y  <->  ( G  e.  ( X  ^pm  CC )  /\  y  e.  X  /\  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) ) ) )
136135biimpa 470 . . . . . . . . 9  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  ( G  e.  ( X  ^pm  CC )  /\  y  e.  X  /\  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )
137136simp3d 969 . . . . . . . 8  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) )
138 r19.26 2688 . . . . . . . . . . 11  |-  ( A. z  e.  RR+  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) k  e. 
dom  F  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) )  <->  ( A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  /\  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) ) )
13910rexanuz2 11849 . . . . . . . . . . . . 13  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) )  <->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) ) )
140 simprl 732 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  k  e.  dom  F )
141103ad2ant2lr 728 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  ( G `  k )  =  ( F `  k ) )
142 simprr2 1004 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  ( G `  k )  e.  X )
143141, 142eqeltrrd 2371 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  ( F `  k )  e.  X )
144141oveq1d 5889 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  (
( G `  k
) D y )  =  ( ( F `
 k ) D y ) )
145 simprr3 1005 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  (
( G `  k
) D y )  <  z )
146144, 145eqbrtrrd 4061 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  (
( F `  k
) D y )  <  z )
147140, 143, 1463jca 1132 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  k  e.  NN )  /\  (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) ) )  ->  (
k  e.  dom  F  /\  ( F `  k
)  e.  X  /\  ( ( F `  k ) D y )  <  z ) )
148147ex 423 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) )  ->  ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
14989, 148sylan2 460 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j )
) )  ->  (
( k  e.  dom  F  /\  ( k  e. 
dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) )  ->  ( k  e. 
dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
150149anassrs 629 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) )  ->  ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
151150ralimdva 2634 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z ) )  ->  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D y )  <  z ) ) )
152151reximdva 2668 . . . . . . . . . . . . 13  |-  ( ph  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( k  e. 
dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
153139, 152syl5bir 209 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
154153ralimdv 2635 . . . . . . . . . . 11  |-  ( ph  ->  ( A. z  e.  RR+  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  /\  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
155138, 154syl5bir 209 . . . . . . . . . 10  |-  ( ph  ->  ( ( A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
k  e.  dom  F  /\  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z ) )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
15649, 155mpand 656 . . . . . . . . 9  |-  ( ph  ->  ( A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  (
( G `  k
) D y )  <  z )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D y )  <  z ) ) )
157156adantr 451 . . . . . . . 8  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  ( A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  G  /\  ( G `  k )  e.  X  /\  ( ( G `  k ) D y )  <  z )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) )
158137, 157mpd 14 . . . . . . 7  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  ( ( F `  k ) D y )  <  z ) )
1595adantr 451 . . . . . . . 8  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  D  e.  ( * Met `  X
) )
1609a1i 10 . . . . . . . 8  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  1  e.  ZZ )
1616, 159, 10, 160lmmbr3 18702 . . . . . . 7  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  ( F ( ~~> t `  J ) y  <->  ( F  e.  ( X  ^pm  CC )  /\  y  e.  X  /\  A. z  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( k  e.  dom  F  /\  ( F `  k )  e.  X  /\  (
( F `  k
) D y )  <  z ) ) ) )
162132, 134, 158, 161mpbir3and 1135 . . . . . 6  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  F
( ~~> t `  J
) y )
163 lmrel 16976 . . . . . . 7  |-  Rel  ( ~~> t `  J )
164163releldmi 4931 . . . . . 6  |-  ( F ( ~~> t `  J
) y  ->  F  e.  dom  ( ~~> t `  J ) )
165162, 164syl 15 . . . . 5  |-  ( (
ph  /\  G ( ~~> t `  J )
y )  ->  F  e.  dom  ( ~~> t `  J ) )
166165ex 423 . . . 4  |-  ( ph  ->  ( G ( ~~> t `  J ) y  ->  F  e.  dom  ( ~~> t `  J ) ) )
167131, 166sylbird 226 . . 3  |-  ( ph  ->  ( y  e.  ( ( J  fLimf  ( NN
filGen ( ZZ>= " NN ) ) ) `  G )  ->  F  e.  dom  (
~~> t `  J ) ) )
168167exlimdv 1626 . 2  |-  ( ph  ->  ( E. y  y  e.  ( ( J 
fLimf  ( NN filGen ( ZZ>= " NN ) ) ) `  G )  ->  F  e.  dom  ( ~~> t `  J ) ) )
169129, 168mpd 14 1  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1531    = wceq 1632    e. wcel 1696    =/= wne 2459   A.wral 2556   E.wrex 2557   _Vcvv 2801    i^i cin 3164    C_ wss 3165   (/)c0 3468   ifcif 3578   class class class wbr 4039    e. cmpt 4093   dom cdm 4705   "cima 4708   -->wf 5267   ` cfv 5271  (class class class)co 5874    ^pm cpm 6789   CCcc 8751   1c1 8754    < clt 8883   NNcn 9762   ZZcz 10040   ZZ>=cuz 10246   RR+crp 10370   * Metcxmt 16385   Metcme 16386   MetOpencmopn 16388  TopOnctopon 16648   ~~> tclm 16972   fBascfbas 17534   filGencfg 17535   Filcfil 17556    FilMap cfm 17644    fLim cflim 17645    fLimf cflf 17646  CauFilccfil 18694   Caucca 18695   CMetcms 18696
This theorem is referenced by:  cmetcau  18731
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-sup 7210  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-n0 9982  df-z 10041  df-uz 10247  df-q 10333  df-rp 10371  df-xneg 10468  df-xadd 10469  df-xmul 10470  df-ico 10678  df-rest 13343  df-topgen 13360  df-xmet 16389  df-met 16390  df-bl 16391  df-mopn 16392  df-top 16652  df-bases 16654  df-topon 16655  df-ntr 16773  df-nei 16851  df-lm 16975  df-fbas 17536  df-fg 17537  df-fil 17557  df-fm 17649  df-flim 17650  df-flf 17651  df-cfil 18697  df-cau 18698  df-cmet 18699
  Copyright terms: Public domain W3C validator