MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmncom Unicode version

Theorem cmncom 15391
Description: A commutative monoid is commutative. (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
ablcom.b  |-  B  =  ( Base `  G
)
ablcom.p  |-  .+  =  ( +g  `  G )
Assertion
Ref Expression
cmncom  |-  ( ( G  e. CMnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )

Proof of Theorem cmncom
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ablcom.b . . . . . 6  |-  B  =  ( Base `  G
)
2 ablcom.p . . . . . 6  |-  .+  =  ( +g  `  G )
31, 2iscmn 15382 . . . . 5  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) ) )
43simprbi 451 . . . 4  |-  ( G  e. CMnd  ->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) )
5 rsp2 2736 . . . . 5  |-  ( A. x  e.  B  A. y  e.  B  (
x  .+  y )  =  ( y  .+  x )  ->  (
( x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  =  ( y  .+  x ) ) )
65imp 419 . . . 4  |-  ( ( A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x )  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
74, 6sylan 458 . . 3  |-  ( ( G  e. CMnd  /\  (
x  e.  B  /\  y  e.  B )
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
87caovcomg 6209 . 2  |-  ( ( G  e. CMnd  /\  ( X  e.  B  /\  Y  e.  B )
)  ->  ( X  .+  Y )  =  ( Y  .+  X ) )
983impb 1149 1  |-  ( ( G  e. CMnd  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .+  Y )  =  ( Y  .+  X
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2674   ` cfv 5421  (class class class)co 6048   Basecbs 13432   +g cplusg 13492   Mndcmnd 14647  CMndccmn 15375
This theorem is referenced by:  ablcom  15392  cmn32  15393  cmn4  15394  cmn12  15395  mulgnn0di  15411  subcmn  15419  cntzcmn  15422  prdscmnd  15439  crngcom  15641  ip2di  16835  ofldchr  24205
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ral 2679  df-rex 2680  df-rab 2683  df-v 2926  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-nul 3597  df-if 3708  df-sn 3788  df-pr 3789  df-op 3791  df-uni 3984  df-br 4181  df-iota 5385  df-fv 5429  df-ov 6051  df-cmn 15377
  Copyright terms: Public domain W3C validator