MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cmntrcld Structured version   Unicode version

Theorem cmntrcld 17120
Description: The complement of an interior is closed. (Contributed by NM, 1-Oct-2007.)
Hypothesis
Ref Expression
clscld.1  |-  X  = 
U. J
Assertion
Ref Expression
cmntrcld  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  (
( int `  J
) `  S )
)  e.  ( Clsd `  J ) )

Proof of Theorem cmntrcld
StepHypRef Expression
1 clscld.1 . . . 4  |-  X  = 
U. J
21ntrval2 17108 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( int `  J
) `  S )  =  ( X  \ 
( ( cls `  J
) `  ( X  \  S ) ) ) )
32difeq2d 3458 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  (
( int `  J
) `  S )
)  =  ( X 
\  ( X  \ 
( ( cls `  J
) `  ( X  \  S ) ) ) ) )
4 difss 3467 . . . . . 6  |-  ( X 
\  S )  C_  X
51clsss3 17116 . . . . . 6  |-  ( ( J  e.  Top  /\  ( X  \  S ) 
C_  X )  -> 
( ( cls `  J
) `  ( X  \  S ) )  C_  X )
64, 5mpan2 653 . . . . 5  |-  ( J  e.  Top  ->  (
( cls `  J
) `  ( X  \  S ) )  C_  X )
7 dfss4 3568 . . . . 5  |-  ( ( ( cls `  J
) `  ( X  \  S ) )  C_  X 
<->  ( X  \  ( X  \  ( ( cls `  J ) `  ( X  \  S ) ) ) )  =  ( ( cls `  J
) `  ( X  \  S ) ) )
86, 7sylib 189 . . . 4  |-  ( J  e.  Top  ->  ( X  \  ( X  \ 
( ( cls `  J
) `  ( X  \  S ) ) ) )  =  ( ( cls `  J ) `
 ( X  \  S ) ) )
91clscld 17104 . . . . 5  |-  ( ( J  e.  Top  /\  ( X  \  S ) 
C_  X )  -> 
( ( cls `  J
) `  ( X  \  S ) )  e.  ( Clsd `  J
) )
104, 9mpan2 653 . . . 4  |-  ( J  e.  Top  ->  (
( cls `  J
) `  ( X  \  S ) )  e.  ( Clsd `  J
) )
118, 10eqeltrd 2510 . . 3  |-  ( J  e.  Top  ->  ( X  \  ( X  \ 
( ( cls `  J
) `  ( X  \  S ) ) ) )  e.  ( Clsd `  J ) )
1211adantr 452 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  ( X  \  ( ( cls `  J ) `  ( X  \  S ) ) ) )  e.  (
Clsd `  J )
)
133, 12eqeltrd 2510 1  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( X  \  (
( int `  J
) `  S )
)  e.  ( Clsd `  J ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1652    e. wcel 1725    \ cdif 3310    C_ wss 3313   U.cuni 4008   ` cfv 5447   Topctop 16951   Clsdccld 17073   intcnt 17074   clsccl 17075
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4313  ax-sep 4323  ax-nul 4331  ax-pow 4370  ax-pr 4396  ax-un 4694
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2703  df-rex 2704  df-reu 2705  df-rab 2707  df-v 2951  df-sbc 3155  df-csb 3245  df-dif 3316  df-un 3318  df-in 3320  df-ss 3327  df-nul 3622  df-if 3733  df-pw 3794  df-sn 3813  df-pr 3814  df-op 3816  df-uni 4009  df-int 4044  df-iun 4088  df-iin 4089  df-br 4206  df-opab 4260  df-mpt 4261  df-id 4491  df-xp 4877  df-rel 4878  df-cnv 4879  df-co 4880  df-dm 4881  df-rn 4882  df-res 4883  df-ima 4884  df-iota 5411  df-fun 5449  df-fn 5450  df-f 5451  df-f1 5452  df-fo 5453  df-f1o 5454  df-fv 5455  df-top 16956  df-cld 17076  df-ntr 17077  df-cls 17078
  Copyright terms: Public domain W3C validator